Table of Contents

YN] 1 3
B o] = Ty o TP PPRT PP 3
Lo B o) o (=T W DTt Yol ¢ o1 A o F RS 3

b. Why the problem is suitable for a computational APProACh............cceevvveecvesiiieeiieecieesieesieeeeesieeeien 3

2. STAKEHOLDERS «..evtetiiurttetesitttessstteessibatessasse s e s eabae e s sb bt e e s e anbe e et mba e e e s b bt e e s abb e e s s ama e e e e sa b e e e e s mb b e e s sabb e e e e abaeesebbaeesannaeesas 3
0. 1dentification Of SEAKENOIAIS.ccccueieeeeeeiieeieeete ettt s e e st e et e st esse e s taaessaeesstaasssaessseesaseans 3

b. How the solution is appropriate to the sStakenolder’s NEEdS.............cccuecuvevvvescveeiieesiieesieesiresieesieeeiea 3

IR {2 7Y ol PP TP PPPT PPN 4
a. Interview with Dr Monty Lyman and Dr RiSRIKQ SiNAQcceecueieeiueesiieeiiesciieesieessieesieesiaesisesiaesseans 4

b. Survey about computerised Mmelanoma dEtECLiON............ccveecueeiiresiieesiieeieescteeseessveeseeestressssesieesiseans 5

C. ANGIYSIS Of SUIVEY FESUILS ..c..vveviesiieeie ettt e et e et e e et e et e e e tte ettt e s taesateasase e s taaaseasastassssaesssassaseans 6

Lo BV Lo) e) Y LT K Lo RS 9

4. PROPOSED SOLUTION 1. uutteeeiuttteesiitteessnttesssbtte s sibte e s sabat e s s asba s e s smaa e e s aabae e s e bb e s e s aaba e e e smbae e s sbbeeesanbaeeesanbaeessabreeesanns 13
Lo B0 Lo (ol=Ne) i =11, Lol SR 13

D. SUCCESS CIEOIIQ ..ottt ettt ettt sttt eat ettt et e e ate et eeatesaeesaeenaeenseeteeseas 13

Lo =0 {14 = TP 15

Lo B Lo T 1o T =l o t=te TV [=T =T SR 16

LYo A e [t =e [V 1= 1=] 1 SR 16

So GENEIAI LIMIEATIONS ..ottt ettt e et e et e ettt ettt e e ettt e st e s ate e s taeete s s staeasssesssaaasseanasaesssaesnseanans 17

Lo e iAo T = W11 o [Lo KR 17

D HAIAWAIE LIMIEQEIONS.eeeeeeieeeeeeee ettt ettt ettt et et eeate st e et e naeenaeeateeaeas 17
[[19
1. DECOMPOSITION cetiiurttetiiriteiisttessirteesesibe s e sesae e s sabb e e e s sba e e e s asbaeessab bt e e s aaba e e e s bbb e e e s a bbb e s s b b e e s sabaeeseanbasesannbaeesanbaeesas 19
0. Problem DECOMPOSITIONcecuvvesieeeiisesieeeiiteeieesttt e st e st e st e s te e e tea s s staasstaeastaasasesssteasaseasssassesssssaessees 19

B SEFUCTUIE CRQIL ...ttt ettt ettt at ettt et eateeateeatesateeaeenseenseenseeseas 21

C. AIGOITERMIC OVEIVIBW ...ttt ettt st e sttt e s te e st a ettt e et a e st e e astaasataesstaasasessasaassessnssaeses 22

2. SOLUTION IMIOCKUP ...ttt ettt sttt sttt ettt ettt s e e s st e e s aba e e et s b e e s s bb e e e s e b b e e e s nbbe e s s baeeesnbaeessannnes 28
0. USGDIIIEY IMEASUIEScceeeeseieeeeiieseeeee st ettt e ette e sttt e st e s ate e et a st a s st e s staastaeastsasasaesataasasessasaassessnssaesses 28

o3 o] Yo Te e WY Lo Yol 1| SR 29

OB (o] (=1 gTo] o (=T £=T=Te | Lo (ol QSR 33

3. APP DATA STRUCTURE ..ccttiiuttteiiittteiitttesebtt e eiat e s st e s et e s et ebae e e s sb e e e s s ba e e et aaba e e s sba e e e s e bae e e s bbb e e s s baeeesnraeessannnes 34
Lo B 011V, Il (o KX N [1o o T [KSR 34

B VALIAOLION ...ttt ettt at ettt et e ate et e et e eat e e aeeeae e teenteeteas 34
Z TESTING PLAN Lettittteeitttee ettt e sttt e s et e e sab et e s s bb s e e s sab et e s s aba s e s e bbb e e s ea b b e e e e bb e e e s e abb e e e s abb e e s s abbe e e s enbbeeesanbaeessabbeeesanns 35
0. Testing during dEVEIOPMENTeeeueeeeeeeiiieeieeet st estt et s e et e e sttt ettt e st e s te e s taassesssaasssesesssaensses 35

D. POSt dEVeIOPMENT tESE PIAN........ceceeeeieeeeeeit ettt et e e et e et e et e sttt e sataesate e s taesaseesteastesenssaensees 36

Analysis

1. Identification

Skin cancer is the most prevalent type of cancer today. Melanoma is the most common type of skin
cancer, and accounts for around 75% of skin cancer deaths. There were around 325,000 new cases
reported just in 2020, with around 60,000 deaths in 2020 directly attributed to melanoma [ref_1].

The problem is further propagated in less developed countries, where people do not have reliable
access to good healthcare. Due to this, they are often not diagnosed and once they realise, they have a
serious disease they are not either able to get to good enough healthcare, or more commonly are not
able to financially afford to get treatment.

Melanoma is a deadly disease, but if it is recognised and diagnosed early most melanoma cases can be
cured with minor surgery. The minor surgery is not only much cheaper (less of a financial burden), but
is also less technically advanced (so the treatment can be done with less specialised equipment and
doesn’t require such an experienced doctor).

As melanoma is visible to the naked eye, a camera can be used to take a picture and then the product
can run an algorithm to give a prediction about whether the picture contains melanoma or not, and with
what certainty. Based off that prediction, the product would be able to provide some kind of further
advice to the user, such as a direct reflection of advice given by trusted sources such as the NHS, and
guidelines to self-diagnose to provide an additional layer of certainty.

This is particularly suited to a computational approach as it involves a lot of data crunching with image
processing and machine learning (and subsequently a lot of iteration). With modern day processors this
can be done relatively easily. As well as this, modern-day cameras can take high quality images of
human skin, allowing for predictions to be made with as much data as needed — increasing the
reliability and accuracy of the algorithm. A computational approach will also allow for classification of
skin diseases very quickly, allowing for more diagnoses to be possible in a shorter amount of time.

2. Stakeholders

The stakeholders of my product fit into two main categories — those who will use the app and those
who will be aided by the app’s performance.

The first category includes the people who would use this app. These will be people who are concerned
about their health, and want to check their skin for melanoma. They will use the app by taking pictures
of the skin anomaly and uploading it into the app. Then the app will run an algorithm to make a
prediction about the skin, whether is malignant or benign (active, cancerous or not active, not
cancerous). The app will also show its certainty in its prediction, letting the user know if their case is
especially serious. Furthermore, the app will give up to date advice from reliable organisations, so that
the users know what the next steps for them would be given their condition.

The second category is the people who will be aided by the app’s performance, this would mainly be
healthcare organisations and doctors. With this app they could help diagnose melanoma over the
phone, or even via email, which would save time, transportation, money and may allow the doctor to
deal with more cases in a given amount of time. Doctors would also be able to use this app to monitor
the state of a patient’s skin without needing in-hospital check-ups, this would be especially helpful for
repeat cancer patients, and for the cases the doctor is unsure about.

This product is appropriate to their needs as it provides a wider range of people with access to free
diagnosis of melanoma. It will allow many more people to self-diagnose with a certain level of
confidence without having to go to healthcare professionals, which not only takes a lot of time and is
often not possible but also costs a lot in a lot of countries. As well as this the medical professionals will
have the mundane and logical work of diagnosis cut out, and so they will be able to spend their time on
treating people rather than diagnosis.

The app will generally make the diagnosis of melanoma much easier and quicker. Therefore, it will
allow more people to self-diagnose with ease, and make it a process that is available reliably for all.

3. Research

I decided to interview Dr Monty Lyman and Dr Rishika Sinha, who are very knowledgeable in the field
of dermatology. I believe getting an insight into the field of dermatology and the current state of
melanoma diagnosis would help me understand the problem better, and so create a better solution. As
the interviews were quite long, [have written a summary of what they said, only mentioning the most
important details.

“Initial triage and diagnosis of melanoma is done through visual inspection by health professionals
who are not melanoma specialists. This results in many unnecessary referrals to an already
overstretched dermatology service, as well as the more serious problem of missing skin cancer.
Artificial Intelligence provides a huge opportunity in aiding clinical decisions surrounding the
diagnosis of this deadly disease.” — summarising quote from Dr Lyman, author of The Remarkable life
of the Skin.

o. Current state of melanoma diagnosis

Dr Lyman —
People have to go to doctors that are usually not specialists (ie GPs) for an initial inspection,
and if the GP believes that there is sufficient evidence of melanoma, the patient is referred to a
specialist. Unfortunately the waiting times for specialists inspection are quite long, and for
melanoma detection time is of the essence. This waiting time is usually due to false positives
from the GPs, and as well as this sometimes GPs miss positive cases.

Dr Sinha —
Go for a checkup with a GP, and if the GP has sufficient evidence or the patient is unsatisfied
the GP refers the patient to a specialist. Suspected melanoma should be acted on quickly as it
can cause permanent damage quite early. The patient should go for a checkup within 2 weeks,
and if positive get treatment within another 30 days.

B. Would a product that helps aid diagnosis be beneficial?

Dr Lyman —
Yes, there have been studies done that show the detection of melanoma by eye often results in
false positives and sometimes misses positive cases, even when the detection is carried out by
GPs. The current guidance for self detection is using the ‘ABCDE’ rule, which is good for a
general inspection but the method is just not consistent enough.

Dr Sinha —
It is not reasonable to believe the product will be able to diagnose with 100% accuracy just by
looking at the mole. The product would be beneficial as an aid to diagnosis, but it should not
replace diagnosis by professionals. Another problem is false diagnosis via technology often
leads to lots of patients being overly paranoid and not believing the specialists when they say
that they do not have a problem. This ends up with unnecessary treatment costing time and
money — something that could be spent actually saving someone with melanoma.

As well as images the product should determine risk factors (specified by dermatological
institutes, such as type of skin, immuno-status, evolution of mole and family history), this will
allow for more consistently accurate predictions, and will be a better diagnosis.

y. Do today’s smartphones have cameras that are high enough resolution to make inférences from
1mages of possible melanoma?

Dr Lyman —
I am not very aware of the capabilities of smartphones today, but for proper inspection of
melanoma a dermascope is used. It magnifies the skin and illuminates it so that the different
colours of the melanoma are easier to see.

Dr Sinha —
Modern day smartphone cameras (such as on the iPhone) are good enough, but a lot depends on
how good the algorithm that is making the prediction is.

6. Are there any other widespread skin diseases that are detected in a similar way that pose a greater
threat than melanoma?

Dr Lyman —
There are three types of skin cancer that are relatively common. The most common is Basal
Cell Carcinoma, it is usually benign and doesn’t spread or have much of an effect on health.
Therefore, it would be helpful to know of its existence, but it isn’t needed. The second most
common is Squamous Cell Carcinoma, this is also similar to BCC but can be slightly more
dangerous as it spreads a bit more. The third most common is Melanoma. Melanoma is the
most dangerous due to the fact it spreads very quickly. If not acted upon quickly melanoma can
even prove to be fatal and occurs in people of all ages, so a product to help detect melanoma
would have the greatest impact.

Dr Sinha —
Almost identical response to Dr Lyman’s.

€. Would you recommend any organisations that provide data/information about melanoma to use
whilst developing this product?

Dr Lyman —
Yes, a paper by A.Esteva et al — “Dermatologist-level classification of skin cancer with deep
neural networks.”. I read it as part of my research whilst writing my book and it provides great
insight about how to predict melanoma well from images. As well as this a study by J.Dinnes
et al — “How accurate is visual inspection of skin lesions with the naked eye for diagnosis of
melanoma in adults” [ref_2]— shows why there is a problem and technology can help solve it.

Dr Sinha —
The New Zealand dermatology department is arguably the best in the world and provides great
information [ref_3]. It is often used for training doctors.

I asked about the reliability of ISIC [ref_4] (The International Skin Imaging Collaboration), and both Dr
Lyman and Dr Sinha said that it is a reliable organisation and I should use their data for training should
that be the need.

I decided to survey as many people as possible in different scenarios to learn about their current
understanding about melanoma detection. The respondents will be the eventual users of the product,
and so should give me a good idea of what the average user knows about melanoma, what they hope to
gain from a product to help diagnose melanoma, and what would make them trust a product that
diagnoses them.

I collected 297 responses for my survey, I believe this number of responses can allow me to confidently
infer from the results. The questions I asked were as follows:

1. Before this survey, were you aware of the existence of melanoma, or any other type of skin
cancer?

2. How often do you go for a general medical check-up (include any visits to a GP or doctor)?

3. During these check-ups are you screened for melanoma, or any type of skin cancer?

5.

6.
7.

Do you know how you could self-diagnose melanoma? (Could you tell if someone has
melanoma by looking at their skin?)

Arrange these features in order of importance to you if there was an app to help diagnose
melanoma (highest is most important, lowest is least important).

On a scale of 1-10, how much would you trust a computer prediction?

What would make you trust a computer’s prediction more?

Results: https: //forms.office.com/Pages/AnalysisPage.aspxid=XN7vxi-
BKEePctvBoUB1ACJojeaWe45Dg6cxiBimoOpUQITUzQ1SFQ30DFTUURDWDEOTVRBRzZPV

Cqu&AnalyzerToken=1nzWAkBk7QwDEduVI9SAOHxevZrZPBMNH

1. Before this survey, were you aware of the existence of melanoma, or any other type of skin cancer?

2. How often do you go for a general medical check-up (include any visits to a GP or doctor)?

m Daily = Weekly = Monthly = Yearly = Less oftenthan once a year

0% 0%

3. During these check-ups are you screened for melanoma, or any type of skin cancer?

https://forms.office.com/Pages/AnalysisPage.aspx?id=XN7vxi-BKEePctvBoUB1ACJojeaWe45Dq6cxiBimoOpUQlJTUzQ1SFQ3ODFTUURDWDE0TVRBRzZPVC4u&AnalyzerToken=jnzWAkBk7QwDEduVl9AOHxgvZrZPBMNH
https://forms.office.com/Pages/AnalysisPage.aspx?id=XN7vxi-BKEePctvBoUB1ACJojeaWe45Dq6cxiBimoOpUQlJTUzQ1SFQ3ODFTUURDWDE0TVRBRzZPVC4u&AnalyzerToken=jnzWAkBk7QwDEduVl9AOHxgvZrZPBMNH
https://forms.office.com/Pages/AnalysisPage.aspx?id=XN7vxi-BKEePctvBoUB1ACJojeaWe45Dq6cxiBimoOpUQlJTUzQ1SFQ3ODFTUURDWDE0TVRBRzZPVC4u&AnalyzerToken=jnzWAkBk7QwDEduVl9AOHxgvZrZPBMNH

mYes ®No = Lessoftenthanthe medical checkups

4. Do you know how you could self-diagnose melanoma? (Could you tell if someone has melanoma by
looking at their skin?)

= Yes = No

5. Arrange these features in order of importance to you if there was an app to help diagnose melanoma
(highest is most important, lowest is least important).

Most Important Feature

Reminders to check your skin every week | N NN

Certainty of Melanoma prediction
Storage of previous photos to see change over time of...
Information about what to do if you believe have...

Detection of Melanoma from pictures

Information about how to self-diagnose melanoma

o
N
o

40 60 80 100 120 140 160
Axis Title

Second Most Important Feature

Reminders to check your skin every week | NI

Certainty of Melanoma prediction

Storage of previous photos to see change over time of
possible cancerous cell

Information about what to do if you believe have
melanoma and contact details for specialists

Detection of Melanoma from pictures

Information about how to self-diagnose melanoma

o
[y
o
N
o
w
o
B
o
(O]
o
D
o
~
o

Third Most Important Feature

Reminders to check your skin every week

Certainty of Melanoma prediction

Storage of previous photos to see change over time of
possible cancerous cell

Information about what to do if you believe have
melanoma and contact details for specialists

Detection of Melanoma from pictures

Information about how to self-diagnose melanoma

o
=
o
N
o
w
o
N
o
u
o
o]
o
~
o

6. On a scale of 1-10, how much would you trust a computer prediction?

On a scale of 1-10, how much would you trust a computer
prediction?

=
o

N Wb OO N 0O L

o
=
o
N
o
w
o
N
o
u
o
o]
o
~
o

80

80

80

7. What would make you trust a computer’s prediction more?
Brief summary of most common themes —

- Explanation of algorithm that diagnoses the user, so that the user can understand what is
diagnosing them. Helps build trust with the user.

- Further checking with doctors or specialists.

- Study showing the accuracy of algorithm, and possible success cases.

- Qualified doctors and specialists backing app.

- Ensuring no data is leaked or stored without consent.

Here I will go over the key findings and main takeaways for a solution to this problem. The
justification will be in square brackets, referring to the survey result that justifies this.

a. Many people are aware of skin cancer and its problems [1], yet are not being screened for melanoma
that often [3] despite having access to doctors at least once a year [2].

B. Many people are not able to self-diagnose melanoma [4]. Therefore, an app that can provide
information about diagnosis and is also able to diagnose will be useful for the majority of people.

y. The majority of respondents of the survey believed that information about how to self-diagnose
melanoma was the most important feature [5], so this will be a necessary part of the final product.

6. The second most important feature was the detection of melanoma from pictures, and a significant
amount of people also said it was the most important feature of the app [5]. Therefore, the diagnosis of
melanoma from pictures will be important for the final app.

€. The other features such as reminders, certainty of prediction, storage of photos and specialist contact
were all voted for by a significant amount of people very evenly. Therefore, these are all important

features that may come after y and o.

C. [6] showed that many people don’t trust a computer’s diagnosis very much, with an average trust of
6.2 on a scale of 1-10. Many people said that further backing by specialists, and evidence will help build
trust [7]. As well as this an explanation of how the algorithm works will also help build trust [7], as
someone who understands what is diagnosing them will have an easier time believing it.

SkinVision is a premium, paid for medical service

: sy that helps you asses skin spots and moles for the
SkinVision psy p

most common types of skin cancer.

This app is the most popular for computer aided diagnosis of skin diseases (~ 1,800,000 users to date). It
is downloaded for free from the app store and google play store, but most of the important features are
only usable once you pay for the premium version. In this section I will go over the most important
features of the app, explaining why it is the most successful in its field (which may end up influencing
my design).

1. Opening Screen

09:11

“’ SkinVision

)

09:12

Get smart
about skin
health

e00

Learn. Check your skin
and get instant risk

assessments.

FIND OUT MORE

Login with existing account

These screenshots show what you see when you first open the SkinVision app. The app opens up with a
button that allows you to understand what the app does in detail, through pictures and brief descriptions

)
8
8
)

09:12

ceo

Track & Map. Create your
body map and track your
skin spots regularly.

Get started

of the process. Then there is a button that leads you to the login screen.

I think the minimalist design of the opening screen help to make this app accessible to all, as
everything is very easy to comprehend. The pictures and brief descriptions also help to further clarify

what is happening in this app, and so make this app even more understandable.

2. Login Screen

09:12 o

<

SkinVision is often paid
for by health insurers and
employers. Check the list
of our partners below to
find out if your use of
SkinVision is covered.

I No, I'm not covered l

Which companies and insurers cover
SkinVision?

Once you click on ‘Login’ or ‘Get Started’ you are led to a page that explains that SkinVision is often
covered by medicare and insurance companies. Then if you are covered you have to get some proof via
that company to use the app, or you have to subscribe for different services. Unfortunately, so far there

mn o T - 12:05 o T -

Close

Companies and insurers that
offer free access to SkinVision

Medicash policyholders (%D

Melanoma UK
patient group

How to start

We offer a range of options for you
and your skin health.

) Monitor your

/" skin health ron£4.17

MELANOMALK

/i‘ Check a skin spot £6.99

/\/\ Learn, track & map Free Search for my insurer

Start with a free account
—

are only two insurers who offer free access to SkinVision.

Act in Time. Get personalised
insights and reminders.
Know when to visit a doctor.

Additionally, there are 3 subscriptions that you can use for the app. The first one is a subscription
service, that starts from £4.17 per month, which allows you to scan your skin multiple times (the
number depends on how much you pay for the subscription). The second subscription a one-time fee of
£6.99 for detailed analysis of one picture of your skin. The final subscription is free, and allows you to
take pictures and store them in the photo tracker, no analysis is conducted on the photo tracker.

Unfortunately, I do not think that the price is justified, as you could go to the doctors for free or a

similar price and get a diagnosis that most people seem to trust more [c.C.]. The free subscription of the
app seems to be beneficial for the user even though their skin does not get classified, providing many
useful features such as the compilation of information and storage of skin photos which may turn out to
be very useful.

3. Photo Tracker

09:14 S 09:15 wE 09:15 wil ®
«safari

< 1spot
@ shean @ shaan
Set Skin Check 0 re Set Skin Check
Tun Reminder kin ¢ er? Read articles Reminder
[}
(<}

This spot has not

been assessed

Tap the photo to see more details about the
selected skin spot

Front (0) Back (0) Front (1) Back (0)
[check again
S ~A - x <
v =Y r < See more details

The “my body” page is the main page of the app. It is a visual representation of data that allows the
data to be very easily accessed by the average user, essentially a photo tracker. This page allows you to
click on different parts of the body and take a picture of that part of the body with the camera feature
and store that photo. This visual representation makes it very easy to find the same photo later on for
reference. This page also allows you to access every other part of the app.

I will be going through most of the features that are relevant to finding the best solution to this
problem. I will not be going through features such as profile settings and messages because I do not
believe they are necessary to help solve the problem of diagnosing melanoma.

I think this main home page is great, but perhaps a bit too convoluted for a user who simply wants to
diagnose possible melanoma, and you have to take a deep dive into the app to find information about
self-diagnosis [c.y.]. As well as this it is not clear whether the images you take are being associated with
you at all (as you do have to make an account), and you are not made aware about whether your data is
being further used for anything else or being given to anyone else [c.7.].

4. Camera feature

save photo?

To help track changes over time we
recommend that the spot is in the centre of
the photo and that you take the photos at the
same angle and from the same distance

away.

Retake

The camera icon on the photo tracker page allows you to access the camera feature of the app. This
opens the phone camera, and automatically turns on the flash. The image you see has a green dot
placed in the middle of the screen to help centre the melanoma, to make sure the image will be
interpreted better by the algorithm. Having taken an image, you can retake it or save it to the app where
it can be accessed later on. I think the idea of having a way to centre the melanoma and make sure the
images are all of a certain size/distance from the skin will help a lot in increasing the accuracy of a
prediction algorithm. The SkinVision app helps line up the mole to take a picture but does little to
explain how far away the camera should be from the skin.

5. Information Displays

09:157 w s 09:16 o
UV Index < Help
Q Search

Moderate Skin cancer information

Types of skin cancer

Advice

Latest result
Source
See all 8 articles v

Melanoma symptoms

ical Shar

The app also has pages that display important information, such as UV level and skin cancer
information. The UV Index page is very helpful for live information about risks of going outside, but
the skin cancer information is not very easy to find (it is hidden deep in settings), and is not displayed
very well.

6. Reminders

09:16 o =

N,

=

Get reminders

Did you know that most skin cancers can be
successfully treated if caught early?

recommend you

check your skin regularl

Would you like a reminder when you're due for
your next skin check?

| Not now, hanks |

The SkinVision app also has an integrated reminders feature. This feature works by reminding you
every so often to check your skin for any signs of cancer. I think this simple feature is very effective in
getting people to use the app more often, potentially improving their health.

4. Proposed Solution

I have decided to make the product an app on an iPhone. There are many reasons for this, the most
important being that it is a phone that is widely used that has a reliable camera with high resolution —
something necessary for the app to function properly. The iPhone will also allow a lot of people to
access the product via the App Store, which will allow more people to benefit from the app.

In this section I will use all my findings from my research to detail the criteria that will make the final
product a success. [will follow up each criterion with features that would meet it (in the following
subsection). Following each criterion, I will also justify it, and provide a brief description of how the
criterion would be tested. I will also leave evidence for justification in square brackets.

1. The product must comply with the law and current health guidelines

As this product would inherently have to deal with sensitive data, such as personal images or
information, I will have to use current health guidelines and current law regulations to make

sure the product does not infringe anyone’s rights. I will have to look at data protection laws,
specifically those that are about usage of personal data for medical reasons. [3.c.7.].

Measure: Complies with current laws. (htips: . www.gov.uk/government/publications/code-
of~conduct-for-data-driven-health-and-care-technology/initial-code-of-conduct-for-data-
driven-health-and-care-technology).

2. The main features of the product should be free and available to all

This product will be for the benefit of everyone, and so it should be available to as many
people as possible.

https://www.gov.uk/government/publications/code-of-conduct-for-data-driven-health-and-care-technology/initial-code-of-conduct-for-data-driven-health-and-care-technology
https://www.gov.uk/government/publications/code-of-conduct-for-data-driven-health-and-care-technology/initial-code-of-conduct-for-data-driven-health-and-care-technology
https://www.gov.uk/government/publications/code-of-conduct-for-data-driven-health-and-care-technology/initial-code-of-conduct-for-data-driven-health-and-care-technology

Measure: Is fiee to use for everyone with the correct hardware/software.
3. The product should be easy and intuitive to use

As many people will be using this app there will be a range of technology literacy of people
using this app. Making this app as intuitive and easy to use will make this app accessible to all
people — particularly helping the older demographic as there are a lot of people n that
demographic that may find this product beneficial.

Measure: Feedback fiom stakeholders, complies with Jakob Nielson’s heuristics.

4. The final product should be able to explain to the user how to self-diagnose melanoma and provide
relevant information about self-diagnosis

Providing information for self-diagnosis for many people itself will help a lot of people with
diagnosing melanoma. The survey conducted also showed that a lot of people wanted self

diagnosis information in a product that would help diagnose melanoma [3.¢c.8.J, [3.c.y].

Measure: Check whether information in final product corresponds with current health
guidelines; More than 90% of stakeholder feedback implies that there is enough clearly layer
out information for selt-diagnosis.

5. The final product should be able to aid in the process of diagnosing melanoma

a. The final product should be able to use images to aid in diagnosis.

Visual inspection 1s the main way of diagnosing melanoma today, and so it would be
beneficial if the product could use images to aid in the process of diagnosing
melanoma. As well as this, my research thus far suggests that a diagnosis without the

use of images would not be reliable enough. [3.a.y], [3.a.€.], [3.c.6.].

Measure: Checking if the usage of image data assists in the diagnosis of melanoma
(accuracy of algorithm > 80%).

B. The final product should take into account other risk factors for its diagnosis.

Diagnosing melanoma purely fiom images may seem to be quite accurate, but, as |
learnt fiom my research, taking into account other risk factors such as skin type and

family history will help make the app even more reliable and accurate. [3.a.6.].

Measure: Checking if the app accounts for factors other than images when making a
diagnosis.

y. The final product should provide a certainty in its diagnosis
1t is important fo provide a certainty in prediction to let the user know that the final

product may not be sure about its prediction so it is better not to take what it says for
granted, but instead as advice about whether the user should go see a specialist.

[3a8B.] [3.ce.]

Measure: Checking if the app provides a reasonable certainty when making
predictions (certainty should be above 80% for test data).

6. The final product should be able to store images of the user’s skin in an accessible way

Storing the images in an accessible way will allow the user to check their skin for any
evolution over time — something that is a strong indicator of melanoma. This will also allow

the user to access their photos later on should there be a need. [3.c.8.], [3.c€.].

Measure: Feedback from stakeholders.

7. The final product should be able to take images of the user’s skin in a way that they are all consistent.
For an algorithm to make an accurate prediction about melanoma fiom an image, all the

1mages need to be of the same shape and size, and the suspected melanoma needs to be in a
similar location in the images. Therefore, the product needs to be able to help the user take

1mages in a way that the product can make beneficial use of. (3.d.4), [3.a.y.].
Measure: Inspection to ensure all of the images reach a certain level of similarity.
8. The final product should not take up too much space in storage

The product should not take up too much storage space so that it can be stored on most devices
regardless of their storage capacity.

Measure: Final product should take up less than 100 MB in memory.

I will label each feature with a priority, with [E] representing an essential feature, [U] representing a
useful feature that is not essential for the app, and [A] representing an auxiliary feature that is not
necessary at all for the app, but it would be beneficial in some way. I will prioritise creating an app with
all the (E] features, and then go onto [U] and [A] if | have enough time.
1. Information page. [E]
The final product should have a page that displays all the relevant, up-to date information
about melanoma. This page should include information about topics such as selt-diagnosis (ie
symptoms, risk factors), information about disease and what to do if you think you have it.
Justification: [b.4.]
2. Functional image storage. [E]
The final product should be able to store images in a functional way, allowing users fo access
those images with ease and intuitively. A user should be able to see images of similar areas in a
chronological order so that diagnosis can be made easier.
Justification: [b.6.]
3. Integrated camera access. (E]
The final product should have integrated camera access that helps the user take images of the
skin in a way that will help enhance both human and algorithmic diagnosis of melanoma. This
camera should store the images fo the functional image storage.
Justification: [b.7.]

4. Classification of skin using images. [E]

The final product should be able to make predictions about whether the user has melanoma or
not based on images taken by the integrated camera (so that they are all in a similar format).

Justification: [b.5.a.]
5. Certainty of prediction. [U]

The final product should provide the certainty of its prediction whenever it makes a prediction
about the user.

Justification: [b.5.y.]

6. Likelihood of melanoma from other risk factors. (U]

The final product should be able to take into consideration other risk factors, to help make the
prediction/certainty even more accurate. The risk factors it should take into consideration are:
Ultra Violet light exposure, Amount and type of moles, Type of skin, Family history of
melanoma, Personal history of melanoma, Immuno-comprimisation, Age.

Justification: (b.5.6.]

7. Reminders to check skin. [A]

The final product should provide reminders to the user to check their skin every month.

Justification: from my research I found that melanoma is a very aggressive cancer and so 1t

must be dealt with quickly (3.a.a.], and so it is necessary to diagnose melanoma at an early
stage. Providing reminders would make more people check their skin more ofien, allowing for
more melanoma to be caught early, which can be dealt with more easily than melanoma caught

late.
8. Current skin cancer risk conditions in local area. [A]

The final product should provide live information about weather conditions that may have
associated cancer risks. Such weather conditions include UV exposure, pollutant exposure,
acidic skin irritant exposure.

Justification: if people are made aware of the risks involved with going outside on certain

days, they may lower their risks by avoiding going out on high-risk days. This is particularly
helpful for the older demographic who are more likely to get affected by melanoma.

1. The device that the final product runs on must be an i0S device
This is because the IDE [am using to build my project only compiles on iOS devices.

2a. Supported devices must have high quality cameras
2b. The device must be an iPhone X or a newer generation of iPhone to be supported

This 1s due to the fact that the older generations of iPhones do not have cameras with high
enough resolution to take pictures for predictions about melanoma. As well as this the

algorithm that carries out predictions may be very computationally taxing, so newer iPhones
would perform better.

3. The device must have around 100MB of memory available

This is because the machine learning models to make predictions may be quite large. As well
as this the images stored will be high quality so they will also require a lot of memory space.

4. Computer hardware must be good enough to allow for training of models on thousands of images
The computer that the final product is created on must have capabilities to train a machine

learning algorithm on thousands of images in a reasonable amount of time so that I can try
many different models and use the one with the best accuracy.

1. The development computer should be running macOS 10.14 or later

1 will need macOS 14.0 or later as I will be using swift’s createML to help me build my
machine learning models.

2. The device should be running iOS 14.0 or higher

This 1s because many of the features for the app’s user interface will be using SwiftUl, which
1s only properly supported after 10S 14.0.

. Time Constraints

—

As I will have to do this project as an A-level project alongside my other A-levels I will not
have too much time fo work on this project. Therefore, I may not be able to implement all the
features of the proposed ftinal product.

2. Distribution Limitations
As only around 50% of people in the UK have iPhones, not everyone will have access to this

app. As well as this not everyone will have a new enough iPhone to make use of the image
prediction feature.

. Create ML framework

—

As the apple ecosystem does not allow 37 party machine learning frameworks to be used very
easily, I will have to use createML. This will mean that I will not have complete control of
every parameter in the machine learning algorithm.

N

. Support for older iOS versions

The final product will require 10S 14.0 or above so any devices with older sofiware will likely
not be able to use the product.

3. User Interface on different devices
Due to the many difterent sizes of 10S devices, I will not be able to make the app pertfectly

optimised for every device. SwiftUI does automatically format apps for every device, so
hopefully that will be sufficient.

. Camera Resolution

—

Unfortunately, iPhone cameras are unable to take dermascopic pictures, and can only go up to
a certain resolution. This may cause the images to not contain clear enough information for
accurate predictions.

N

. Device Storage

As mentioned earlier the iPhone will require at least 100MB of storage available for the
product.

w

. Device Type

As mentioned earlier the app will only be able to run on certain 10S devices, and so will not be
accessible by every single person.

S

. Testing on devices

As there are so many devices that this product can run on it will be hard fo test the app on each
and every one of these devices. I will only be able to test the device on an iPhone X or iPhone
12 Pro.

[ref 1] - Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide

for 36 cancers in 185 countries

https: /7acsjournals.onlinelibrary.wiley.com/doisfull/10.3322/caac.21660

https://acsjournals.onlinelibrary.wiley.com/doi/full/10.3322/caac.21660

[ref_2] - How accurate is visual inspection of skin lesions with the naked eye for diagnosis of
melanoma in adults https: //www.cochrane.org/CD013194/SKIN how-accurate-visual-inspection-skin-
lesions-naked-eye-diagnosis-melanoma-adults

[ref 3] — DermNet NZ https: //dermnetnz.org

[ref_4] — The International Skin Imaging Collaboration https: //www.isic-archive.com

https://www.cochrane.org/CD013194/SKIN_how-accurate-visual-inspection-skin-lesions-naked-eye-diagnosis-melanoma-adults
https://www.cochrane.org/CD013194/SKIN_how-accurate-visual-inspection-skin-lesions-naked-eye-diagnosis-melanoma-adults
https://dermnetnz.org/
https://www.isic-archive.com/

Design

1. Decomposition

In section 1.b. I have inserted a structure diagram that shows how the final problem can be decomposed
into smaller problems. The black arrows represent the breakdown of a feature into smaller problems so
that the feature is easier to understand. The green arrows show what features require data/information
from other features (ie the functional image storage requires the camera feature of the app to work). The
text at the bottom left of each feature shows which success criteria the feature helps fulfil the most
(which are mentioned in subsection 4.b. of the Analysis section). Some of the success criteria such as
the ease of use [3] and following health guidelines [1] do not fit into the structure chart and will be
addressed elsewhere in the document.

I have broken the final product into three major parts that can be (mostly) tackled separately. In the
following paragraphs I explain my reasoning for these choices, with anything inside square brackets (“
[1) referring to success criteria from the analysis section.

Predictive Features

One of the most important features of this melanoma diagnosis app is the ability to help predict
melanoma, and so diagnose it [5]. There are two major aspects of this feature — to provide a prediction
from some kind of skin classification model, and also provide a certainty of prediction so that the user
can understand whether the algorithm is sure about its prediction.

1. Skin Classifier

There are many approaches one could take to make a skin classifier, but by far the most accurate and
effective approach is to use a machine learning model that can learn and understand what makes a
melanoma a melanoma. A machine learning algorithm will be faster, and, sometimes, more accurate
than a specialist therefore it makes sense to utilise machine learning for this application. Although
there are many types of machine learning algorithms, they all follow the same general structure —
collect training data, then train model, then based on the training performance optimise the model in an
iterative method until the model reaches a certain level of performance. That is why I have broken the
skin classification features into those three parts, which at the end of the iterative process will give the
final classification model for the product.

This feature helps fulfil [5.a], [5.B].

2. Certainty of prediction

Along with a skin classifier the success criteria also mention that the final product should be able to
provide a certainty in its diagnosis, and the method of providing a certainty is heavily reliant on which
machine learning model is chosen and how it is implemented. This feature will not only rely on what
certainty the machine learning learning model provides, but will also be influenced by the risk factors
that the user may have.

This feature helps fulfil [5.y]

Information Features

Another major feature of the melanoma app that arose from research in the analysis section was the
ability to store and display important information regarding things that may help (both the user and the
algorithm) diagnose melanoma. Furthermore some of these features are important for some of the
predictive features to function properly.

3. Functional Image Storage

The analysis section showed that it will be necessary to have a page that stores images in a an
accessible and functional way in the final product. This feature will have two main purposes: to store
and display images in a user friendly way, and also to provide a database which the skin classifier can
access and perform classifications on.

This feature helps fulfil [5.a], [6]

4. Other Risk Factors

In order to reduce the chances of a false positive or negative the final product will also need to take
other risk factors into account. These factors will be given to the final product via user input. The main
purpose of this feature will be to aid the skin classifier by using the risk factors to give a better certainty
of prediction.

This feature helps fulfil [5.y]

5. Self-diagnosis

This feature will provide the user with relevant, up-to date information about self diagnosis of
melanoma. The feature will reference other parts of the final product such as risk factors and images
stored to help make it easier for the user to self diagnose melanoma.

This feature helps fulfil [4]

6. Reminders

Reminders will server as a useful “extra” feature that will help the user remember to check their skin
regularly to ensure that no melanoma gets to the stage where it is difficult to operate on, or even is
untreatable.

This feature is one of the auxiliary features that will only be added if there is enough time. It is a
helpful feature that is not necessary.

Hardware Features

7. Camera

The camera feature will allow users to take photos of melanoma in a consistent way. This feature will
allow them to store their images on the final product and use it as input for the skin classifier. This
feature has a sub feature “Camera guidelines” that will help the user align the suspected melanoma up
in a way that allows the user to take consistent photos, allowing for better diagnosis from the skin
classifier, as well as better photos to use by specialists in the functional image storage.

This feature helps fulfil [7]

8. UV light risk and pollution risk in area

My research in the analysis section showed that there are strong correlations between melanoma cases
and exposure to UV light and certain pollution. Therefore, a feature that lets the user know about
current risks from those factors will be useful.

This feature is one of the auxiliary features that will only be added if there is enough time. It is a
helpful feature that is not necessary.

b. Structure Chart

Melanoma

Diagnosis App

l

Predictive Features

|4

i }

Y

Information
Features

.

.

l

Hardware Features

.

GPS

A\

Skin Certainty of Functional Image | _ Information Camera

Classification prediction Storage - Pages
[5.v] [6]
l l \
| Other risk factors Self-diagnosis C_amgra
guidelines
\ \
Collection of »| Model Training Model 5P v M (7]
training data ” Optimization [)
Reminders

t

J

]

Classification
Model output

[A]

UV light risk in

area

.

[5.a], [5.B]

[A]

Pollution risk In
area

(Al

In this section I will be giving an overview to how each of the features described in the previous two
subsections will be implemented. I will show the algorithms in the form of flow charts in order to show
the general flow of data and algorithmic complexity without limiting myself to a specific
implementation (as it may turn out whilst programming the product that one of the parts of the
algorithm is better with a slight adjustment).

1. Skin Classifier

The skin classifier will be a machine learning model that takes in an image of melanoma as an input,
and classifies that image into one of two classes: melanoma or not melanoma. Through my research I
have found many papers that offer different approaches to a similar problem, and I shall take previous
research into consideration. A paper about skin cancer detection with deep learning by A.Esteva et al.
(https: s/cs.stanford.eduspeoplesestevasnature/) has a lot of information about using machine learning
technology to recognise skin cancers, and so [will be using that as the basis for my algorithm in this
section.

For the classifier I have chosen to use a convolutional neural network as the base architecture, research
has shown these types of algorithms to be the most accurate for one-shot image classification tasks.
Furthermore, the paper mentioned earlier also found that the Inception v3 network worked extremely
well for this task (which is a variant of a convolutional network). Due to the nature of the problem I
may have to test different models and evaluate their accuracy on unseen data, so until I actually create
the models I will not be able to definitively say what works best. Below I have a diagram of a possible
network that would work well.

Input: 299x299x3, Output:8x8x2048

A

H

Convolution Input: g)uslp;gds
Pool 299x299x3 XX
:ﬂ‘;iP%ZI Final part:8x8x2048 -> 1001
s Concat
#= Dropout

Fully connected
am Softmax

As apple offers its create ML service, [will first attempt to use their architecture that apple claims
“automatically synthesises” to create an optimal model. This will likely use some variation of the
blocks seen in the key in the bottom right of the image. If the create ML model is not sufficiently
accurate, [will create a hand-built model based off of the inception v3 architecture that has been shown
to work well in a variety of vision tasks. Below I will briefly describe what each block in the key does.

A convolution refers to a downsizing of inputs usually in the form of 3 dimensional matrices. A filter of
a certain dimension (ie 3x3) is applied to the layer and what it does is it extracts the most important
features from that 3x3 filter to take into the next layer. This filter is applied in an iterative fashion over
every part of the input matrix (like a cloth covering each part of a window whilst cleaning), and so an
output is produced with a different size, containing only the important features of the input. These
convolutions have to be trained via back-propagation (which requires a lot of data) in order to know
which features are important. These will almost definitely be the backbone to the final model.

AvgPool uses a filter in the same way as a convolution, but instead takes the average of all items inside
the filter, creating an output with a much smaller size. This is essentially an untrainable convolution
layer that is used to slim down the input size in order to speed up the algorithm (by having smaller data
to compute).

MaxPool has the same structure as AvgPool, but instead of average all values it takes the maximum of
all values inside the filter as part of the next layer.

https://cs.stanford.edu/people/esteva/nature/

A concat layer is a layer is simply a layer that takes multiple inputs (many matrices in this case), and
concatenates them together into one matrix (or list). This happens often in the algorithm to make sure
that all the different blocks are working cohesively, and are not producing independent predictions.

The dropout layer is used for regularisation, which is essentially making sure a model doesn’t
memorise the inputs corresponding outputs rather than actually learning what features make melanoma
melanoma. This works by randomly turning certain blocks “off”, and so not considering their input to
the final prediction at all. This makes sure that the algorithm does not depend too heavily on certain
blocks, and can come to correct conclusions even if certain blocks do not function as expected.

A fully connected layer refers to a layer of many neurons that perform linear mappings. They convert
matrices and the convoluted inputs into scalar information that can be used by the final soft ax layer to
make a prediction.

The final softmax layer is just a function that takes inputs and converts them to a value between 0 & 1.
This layer’s output will be used to provide a certainty in the final output as well as provide a prediction
for the user.

The machine learning model I will be using will be trained as a supervised algorithm. This means I will
be training the machine learning model using labelled data, and using that labelled data to evaluate the
model’s performance every few iterations of learning. This evaluation will be given in the form of a
loss function. In the case of classification, a categorical cross-entropy function works extremely well
(shown below).

N
1 A
JO) = 5 D H(Puatal-|2™), Proar(-[2"))
n=1
1 X
ke (1—y™)log(1 — Q(")) + y™ log §™

n=1
Where y is the true label of the image (in this case 1 if image has melanoma and 0 if not), and y hat is
the output from the softmax layer of the model (a number between 0 and 1). As you can infer from the
maths if y and y hat are not similar J (the cost function) will be large, if they are similar then J will tend
to zero. The goal of this model will be to minimise this cost function by changing the model’s
parameters.

This minimisation of the cost function will be achieved through back propagation, which is finding the
derivative of the cost function and then propagating backwards through the network with derivatives in
order to find which way the parameters should change so that the algorithm has a lower loss. The back

propagation step will be different for each layer; therefore, I cannot give a general formula.

The algorithm that I will use to optimise the back propagation and training aspect of this model will be
the Adam optimisation algorithm. It uses a mixture of momentum and gradient descent to optimise the
training time and make sure that the training algorithm does not get stuck at a local minima in the cost
function (where a better model is possible but the training optimiser is unable to find it due to the
gradients mathematically being stuck at 0).

Algorithm 1: Adam, our proposed algorithm for stochastic optimization. See section 2 for details,
and for a slightly more efficient (but less clear) order of computation. g? indicates the elementwise
square g; ® g¢. Good default settings for the tested machine learning problems are « = 0.001,
B1 = 0.9, B2 = 0.999 and ¢ = 10~8. All operations on vectors are element-wise. With % and S5
we denote 31 and 35 to the power ¢.

Require: «: Stepsize
Require: 3,2 € [0,1): Exponential decay rates for the moment estimates
Require: f(#): Stochastic objective function with parameters ¢
Require: 6: Initial parameter vector
mo < 0 (Initialize 1% moment vector)
vo < 0 (Initialize 2™ moment vector)
t < 0 (Initialize timestep)
while 6, not converged do
tt+1
gt < Vo fi(6:—1) (Get gradients w.r.t. stochastic objective at timestep t)
my < 1 -my_1 + (1 — 1) - g; (Update biased first moment estimate)
v 4 P2 v + (1 — Ba) '9t2 (Update biased second raw moment estimate)
my < my/(1 — 1) (Compute bias-corrected first moment estimate)
Uy + v /(1 — B%) (Compute bias-corrected second raw moment estimate)
0 < 0;_1 — o - My /(v/0; + €) (Update parameters)
end while
return 6, (Resulting parameters)

This optimisation algorithm was originally developed by D.Kingma and J.Ba, and the section above is
taken from their paper “Adam: a Method for Stochastic Optimisation”. It provides the update rules for
the previous layers, as well as some hyper parameter values that they found worked very well for a
wide range of tasks.

2. Certainty of Prediction

Give each factor a
s = Softmax output User's risk profile weighting based on
] research

\

\

deviation=|s-0.5| |#——

2 risk factors
& Convert to Convert to scale ¥
percentage (1-10)

return (s / 0.5) * 100 D g <\ | Normalise so

between 1 & 10

\ \

Outp_u t Output risk factor
uncertainty

\

\

End End

The certainty of prediction feature will be based off of the output from the classifier. The softmax
output will give an output between 0 and 1, and so the certainty will be the deviation of the output from
0.5. This will be then converted into a percentage to display to the user.

I have also included the risk algorithm here. The user’s risk profile will be taken in as the input, and a
linear function will be applied. Every factor in the risk profile will be given a weighting (between 0 and
1 based on evidence from research - https: /www.cancerresearchuk.org/health-professional/cancer-
statistics/statistics-by-cancer-type/melanoma-skin-cancer/risk-factors). The factors will then be
summed up and normalised to give a risk factor score between zero and ten, which acts as an arbitrary
scale so that the user can have more information about the certainty of their diagnosis.

https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/melanoma-skin-cancer/risk-factors
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/melanoma-skin-cancer/risk-factors

3. UV light and pollution risk in area

Location
services
enabled?

No
* < <
Request access v
] to location
services
Is user on No.
page?
(I
Yes
A
Request
. . Pause 15 .
information from I minsutes Update location
APIS for location
Yes { }

Send request to
UV light API

|

Send request to
pollution API

J

\

v

Runin
background
(asynchronous)

Decode JSON
from request

v

L

Fetch location
from system

Fetch date and
time from system

\ \
Display location Display date and
time

l

\

Discard useless
response info

\

Display UV and
pollution levels in
a graph

J

End

This algorithm just asks the user for location services access in order to send requests to APIs for
information about melanoma risks for current UV light and pollution levels.

4. Camera

Camera
access
enabled?

No

v

Request access
to camera

Yes

Is user on
camera page?

Yes

Yes

Returned
to dashboard?

Show guidelines
superimposed
on image

Yes
Retake photo
chosen?

Save Image
chosen?

-¢—Yes

Photo taken?

Request access
to photo library

NoO—y¢

Yes
Y

Save Image in
functional image
storage

End

This flowchart shows how a user will
navigate through the camera feature. It
shows all the processes that may
happen when the user is trying to use
the camera, including any access that
may be required whilst using the
camera feature for the first time.

2. Solution Mockup

In this section [will create a Balsamiq wireframe that will show the UI structure of the app. It will not
accurately depict the aesthetics of the app, but will provide a good representation of its final structure.
To help guide my design I will use Jakob Nielson’s 10 general principles for interaction design, this
will allow me to create a very usable app (helping fulfil [3])

Jakob Nielson’s 10 general principles are as follows —
(www.nngroup.com/articles/ten-usability-heuristics/)

1 Visibility of System Status

Designs should keep users informed about what is going on, through appropriate, timely feedback.

2 Match between System and the Real World

The design should speak the users’ language. Use words, phrases, and concepts familiar fto the user,
rather than internal jargon.

3 User Control and Freedom

Users often perform actions by mistake. They need a clearly marked 7emergency exit” to leave the
unwanted state.

4 Consistency and Standards

Users should not have to wonder whether diftéerent words, situations, or actions mean the same thing.
Follow platform conventions.

5 Error Prevention

Good error messages are important, but the best designs prevent problems from occurring in the first
place.

6 Recognition Rather Than Recall

Minimise the user’s memory load by making elements, actions, and options visible. Avoid making
users remember information.

7 Flexibility and Efficiency of Use

Shortcuts — hidden from novice users — may speed up the interaction for the expert user.

8 Aesthetic and Minimalist Design

Intertaces should not contain information which is rrrelevant. Every extra unit of information in an
Interface competes with the relevant units of information.

9 Recognise, Diagnose, and Recover from Errors

Error messages should be expressed in plain language (no error codes), precisely indicate the problem,
and constructively suggest a solution.

http://www.nngroup.com/articles/ten-usability-heuristics/

10 Help and Documentation

1t’s best if the design doesn 't need any additional explanation. However, 1t may be necessary to provide
documentation fo help users understand how fo complete their tasks.

In the following section I will show an initial mockup of the final product, and reference which
heuristics are explicitly being used in each view. Unfortunately, [will not be able to properly develop
documentation for the app given the limited time, so I will use this document as the documentation for
the user (helping fulfil [10]). The numbers in the following section will be referring to the heuristics
described above.

1. Dashboard

ﬂ‘“" =2 Ju- \ The dashboard will be the main view in the final product. I have opted
for a very minimal design for the dashboard in order to not have a home
Melanoma Detector screen that is too overwhelming for users [8].

The brief descriptions under each button also provide information for
aShboar the user to understand what each button does [2], but after a while the
user can familiarise themselves with the symbols for different features,
and so make the user experience much more efficient [6] [7].
Re%n Mgm, The text box below the app name helps inform the user of their current

Information location on the app wherever they are, allowing for a more user-
friendly experience [1].

Classify
Skin

Photos Weather
(o) Risks

Camera

\S =

2. Functional Image Storage

M Once the user clicks on the photos button, they will be led to a view that
< Dostboers stores the user’s images in a functional way. The images are arranged in
El a way that they correspond with the physical location of the human’s
anatomy. Once you click any button there will always be an exit button

|~ on the top left of the app that will lead to the dashboard, making sure

users do not get lost in the app [3].
‘\ . . .
"1~ Each group can be clicked to show all the photos relating to that location,
allowing for a more minimalist design that doesn’t have too much going
Head on in one view [8].
Left Arm Right Arm
Body
Left Leg Right Leg

©)
Camera

\S)
(=

(o]
E

9
)

foqszm =0 J'\

< Prots < ghiAm | | - When the user clicks on one of the
groups, they will be led to a screen
. , showing all the photos they have taken
in that area in chronological order. Here
0 they can look at their old images, or

take a new one to store there [6]. If they
click on one of the photos a full
resolution version of it will be shown to
the user, so that they or a specialist can
use it for diagnosis. As well as this
having opened up a full resolution
image the user can click on a classify
skin button that appears to use that
image as input for the skin classifier [6].

X
X

i
e < B

&

Camera Classify

\ =

3. Camera

ﬂszm

< Dashboard

> 0 ivem \

\@@

S

)

4. Skin Classifier

ﬂiszm

< Dashboard

Classifier Prediction:

Likely no melanoma
present in image

Classifier Certainty:

l I

Risk Factor (0-10):

L

]

&

Classify
Skin

el

Choose

&

What next?

0 e \
Skin Classifier

)

\

89%

3

_

Edit
Risk

ﬂq 52 AM

< Dashboard

[—]

)

Photos

Head

< B
=

Left Arm

Right Arm

Body

<

Left Leg

Right Leg

@

Camera

\S

—

ﬂsz AM

< Dashboard

)

Photos

<] W

Head

Left Arm

Right Arm

L

Body

Left Leg

)

5. Information Page

ff

Right Leg

@

Camera

If the user clicks on the camera app,
they will be asked for permission to
access the camera [1]. The camera
interface will be very similar to modern
day smartphone interfaces [2] [4], but
will have an overlay that helps the user
take consistent photos.

Once the user has taken a picture, they
have the option to either retake it
(bottom right symbol) [3] [5], exit the
camera (top right) [3], or save the image
(bottom right). If the user chooses to
save the image, they get led to the
photos view where they choose which
group to save it under.

The skin classifier can be accessed
either by clicking on the button on the
dashboard or by navigating to an image
in the photos view and then choosing an
image to use [6] (7). If the user has not
already selected an image they have to
do so via the choose photo button on the
page. They can also edit their risk
factors from this page, as well as get
information about what to do next once
the classifier makes a prediction. The
large classify skin button will run the
computer vision algorithm on the image
chosen. [1] [2].

The page shows three main pieces of
information. The first is what the
classifier predicts given the inputs, the
second is the certainty of that prediction
and the final one is the user’s risk factor
on a scale of one to ten (aiding the
certainty feature). This minimal design
should keep the user informed but not
overwhelmed [8].

ﬂszm =0 JQA

< Dashboard

The information page will display all the extra information the app has
to offer. This includes information such as self-diagnosis, specialist
contact and more information on the workings of the app (as my
research showed that people would trust an app they understood more)
[2]. This information will be shown in a list where users can click on
items to learn more about them.

/Self-diagnosis

Specialist contact

How the classifier works

Positive prediction

Negative prediction > Users will also be able to edit their risk factors on this page, which will

Feedback aid the classifier. It will ask a few very simple questions that can be
edited any time.

Factor
Age
History of melanoma

Family history of melanoma

Number of severe sunburns in past

6. Reminders

(> \ The reminders section of the app is an extra feature that will only be
oA - made if there is sufficient time remaining. It will show the current date
and have a calendar [2]. It will allow users to enable and disable

reminders, and set a frequency of reminders. It will also allow users to
set reminders on specific days if they would like to.
-

[Daiy T weeky | Monty]

< Dashboard

Reminders @

] Bi-Monthly | Semiyearly | Custom I

< MAY 2021 »|
s M T w T F s

1
2 3 4 5 6 7 8
q 10 n 12 13 14 15
16 17 18 19 20 21 22
23 24 25 26 27 28 29
30 31

K

Set reminder on day

7. Weather Risks

=o0
ﬂ‘“" - \ The weather risks part of the app will also only be made if there is
< Dosttoers sufficient time. It will also show the current date and time, and show the

user two graphs. One will show UV light risk on the y axis (in arbitrary
units [2]), against time on the x axis. The other graph will show
pollution risk (in arbitrary units [2]) against time on the x axis. The user

&8 will receive this information based on their current location, and so will
be asked to enable location services for this app whilst the using it.

UV Light Risks:

Pollution Risks: /

il

\)

I asked Dr Lyman for his thoughts on the design section so far, and below is his response.

“My only concern would be the risk algorithm, as each of the risk factors does not account for 10% of
the risk for developing melanoma. That could lead to people being falsely reassured or worried.
Perhaps use the same risk factors but categorise it into slightly more ambiguous categories ('lower risk’,
'medium risk’, ‘higher risk’). I also don’t think that the risk factor should be shown on the ’classifier
certainty’ page, as someone’s background risk of developing a melanoma is in unrelated to the
immediate question of 'is this mole/spot a melanoma’? For example, if someone has a high percentage
classifier but their general risk is low, they could feel falsely reassured.

I think the interface looks really clear and clean. I think 'Classify Skin’ could be made more user
friendly, like 'Scan your skin’. Also, perhaps there should be a security element to viewing your photos
(e.g. fingerprint/password) as this is sensitive info. And I like the 'reminders’ section. This could be for
both an annual skin check for healthy people, and monitoring a suspicious mole over the course of
weeks to see if it changes/grows.

I really like the UV light risk feature...from what I've seen I'm guessing this will take into account time
of day? The evidence suggests UV risk (in the Northern Hemisphere at least) is highest between 10am
and 4pm.

13

Hope this helps a little. It’s really good!

3. App Data Structure

Skin Classifier

Risk Factors

Image Storage

-inputimage: [[[Int]]]
- softmaxPrediction: Float
- roundedPrediction: Int
- certaintyPrediction: Float

- chooselnputimage(image: HEIC)

- predict(inputimage: [[[Int]]])

- roundPrediction(softmaxPrediction: Float)

- certaintyOfPrediction(softmaxPrediction: Float)

- gender: String

- numSunburns: Int

- avgUVindexInCountry: Float
- daysAnnuallySunbathing: Int
- skinType: Int

- numMoles: Int

- familyHistory: Bool

- inflamBowelDisease: Bool

- HIVorAIDS: Bool

- BMI: Float

- displaySkinTypes()
- calculateRiskFactors() #takes all of the risk
factors as inputs

- headlmages: [HEIC]

- leftArmimages: [HEIC]
- rightArmimages: [HEIC]
- bodylmages: [HEIC]

- leftLegimages: [HEIC]

- rightLegimages: [HEIC]

-addimage(image: HEIC, location:
reference_to_location)

Information Storage

Reminders

Weather Risks

- title: String
- information: String
- helpfullmages: anylmageType

- currentDate: Date

- selectedDate: Date

- remindersActive: Bool

- reminderDictionary: [Date: Bool]
- remindersFrequency: String

- setReminder(selectedDate: Date)
- setRemindersFrequency(remindersFrequency: String)

- previousDateFetched: Date
- UVLightRisk: (api return type)
- pollutionRisk: (api return type)

- displayUVLightRisk(UVLightRisk)
- displayPollutionRisk(pollutionRisk)

The class diagrams above break down my solution into individual classes I will create in Swift. These
classes are designed to be reusable and to have as few dependencies as possible. Some of the classes
such as Image Storage and Information Storage are there as classes to help organise the data stored by
the app. The Reminders and Weather risks classes use APIs to get relevant information and display it.
The Skin Classifier class will use data stored in other classes in order to make predictions. The Risk
Factors class will store information about the user in order to calculate a risk factor value.

To maintain the integrity of my app and prevent any crashes/unexpected data in functions I should
consider all the possible places that the user may enter input data and create validation rules. This will
help ensure that there are no unexpected errors in the app that make the user’s experience undesirable.

View

Type of Check

Data Checked

Justification

Camera

Presence

Access to Camera

The user must allow access to the
camera in order for the app to take
photos.

Presence

Image taken

The user must ensure that the image
taken is of the human skin, otherwise
the app will not give a result that can
be interpreted.

Data Size

Image taken

The user must ensure that the image
taken is not blurred, and is high enough
resolution to be used by the classifier.

Skin Classifier

Presence

Input Image

The user must make sure that they have
chosen an image to use as the input for
the skin classifier.

Presence

Risk Factors

The user must make sure that they have
entered in their risk factors to use for
calculating their risk factors.

Information

Presence

Risk Factors

The user must make sure that they have
entered their risk factors to the best of
their knowledge.

Data Type

Risk Factors

The user must make sure that the data
type for each risk factor entered is
correct. Each risk factor has to have the
correct data type entered as input.

Reminders

Data Type

Selected Date

The selected date entered must be a
valid date.

Data Type

Reminder Dictionary

The dates in the reminder dictionary
must be valid dates.

Weather Risks

Data Type

UV light API data

The data returned from the API call
must be converted into usable data
types. Also need to check that the API
call has returned data, and need to
validate correct data returned.

Data Type

Pollution API data

The data returned from the API call
must be converted into usable data
types. Also need to check that the API
call has returned data, and need to
validate correct data returned.

4. Testing plan

View Test description Example test | Expected Justification
data
Camera Take a picture of Image of Popup to ensure user User must be able to save
human skin back of hand | has taken a picture of an image if they have taken
Valid skin, which then leads | a picture of skin.
to image being saved.
Take a picture that Image of a Popup to ensure user Images not of human skin
does not include chair has taken a picture of should be rejected and not
human skin skin, which then leads | saved.
Erroneous to image being deleted.
Skin Calculate risk factor Not all risk Error message showing | The risk factor cannot be
Classifier | without entering risk factors that risk factors not calculated without the
factors entered entered correctly. necessary information.
Erroneous
Input an image known | Melanoma Classifier predicts The classifier must predict
to have melanoma positive there is melanoma in that there is melanoma in
Valid image image. image when there is.
Input an image known | Melanoma Classifier predicts The classifier must not
not to have melanoma | negative there is no melanoma predict presence of
Valid image in image. melanoma when there is
none.
Risk Risk factors entered Correct data | Risk factor calculated Risk factor must be
Factors with correct data type type risk correctly. calculated if the entered
Valid factors values are correct.
entered
Risk factor fields left Empty field | Error message letting Risk factor cannot be
empty user know fields have calculated if correct data
Erroneous been left empty. not present.
Risk factor fields String data Error message letting Risk factor cannot be
entered with incorrect | in integer user know that calculated if correct data
data type data field incorrect data type not present.
Erroneous entered.
Risk factor fields Age = 9999 Error message letting Risk factor cannot be
entered with extreme user know that the data | calculated if incorrect data
data entered is not is present.
Erroneous reasonable.

Erroneous

Reminders | Reminder chosen for Chosen date | Reminder set for If a valid date is chosen set
valid date =01/01/2023 | chosen date. a reminder for the date
Valid
Reminder chosen for Chosen date | Error showing date If invalid date is chosen do
invalid date =29/02/2023 | chosen is invalid not set a reminder.

There are a few important things that I will test once I have finished building this product. The first is
checking whether the app takes up less than 100MB of storage (success criteria 8), and ensuring that the
final product is free for everyone. I will also need to ensure that the app follows the latest health

guidelines.

To make sure that the product is easy and intuitive to use (success criteria 3), will be giving the final
product to stakeholders to test. I will check whether it is easy for them to use any feature that they
would like to, and whether they can do that intuitively. In order to further improve the usability of my
app I will take feedback from the stakeholder about the design of the app and how it can be made
better. I will then incorporate these features into the app.

Development

1.Ticketing

I decided to use Microsoft Planner to do my ticketing for this project. It allows me to create multiple
buckets in which I can add tasks I need to do. I decided to create the following buckets —

1. Sprint Backlog
2. Current Sprint
3. Finished Sprints

The reason for these buckets is so I can organise my sprints. The Sprint Backlog contains all my sprints
that I need to do. The Current Sprint represents the set of tickets I am currently working on. Each of my
tickets has a number next to it that refers to what sprint that ticket is in, this is just to help organise all
my tickets into distinct sprints whilst using Microsoft planner.

Furthermore, there is a colour next to each ticket and sprint, which represents how difficult I expect
each ticket to be. This will help me manage time and know what will require more effort to implement
(green = easy, yellow = difficult, red = will require significant learning, cranberry = even more time
consuming than red).

2. Sprint 1 — Collection of Melanoma Data

Yellow

O | - Find website with images of
melanoma

Yellow

O | - Ensure data is appropriate for
machine learning model

Green

O | - Download/store data in
appropriate location

Yellow

O | - Ensure images are labelled
correctly

Yellow

(O 1-Clean data (images same size,
labels correct, type of image is
consistent)

Through conversations with stakeholders, discovered the International Skin Imaging Collaboration
(ISIC). ISIC (https: /www.isic-archive.com/) contains images of benign and malignant melanoma used
to train dermatologists to detect melanoma. Therefore, the data can also be used to train a machine

https://www.isic-archive.com/

learning model that detects melanoma. There were also enough images so that a model can be trained

sufficiently accurately.

The ISIC website contains tens of thousands of images of melanoma, all taken differently. I had to
ensure that none of the images [used were taken using microscopes or high-resolution dermascopes as
those images would not be similar to ones that can be taken by iPhones. I also had to ensure that the
data was not biased and I did not use the same image multiple times, or only images taken by a single
study/organisation. I also had to ensure that all the images were higher resolution than 299x299, as that
is the minimum resolution, I could use with swift’s create ML feature to create an image classifier.

Fortunately, the ISIC has inbuilt filtering features where I could remove all images that were too small
or were taken by dermascopes. The feature is shown below in the screenshot. However, the ISIC did
not remove all the dermascopic images so [had to sort through all of the data myself, selecting only
those images that were clearly non dermascopic and could be taken by an iPhone camera.

DIAGNOSTIC ATTRIBUTES

¥ BENIGN OR MALIGNANT
Select All

benign (23980 / 47684)
D indeterminate (0 / 14)

¥ IVIELANUCY TTC

» NEVUS TYPE

» PERSONAL HISTORY OF MELANOMA
» SEX

TECHNOLOGICAL ATTRIBUTES

» DERMOSCOPIC TYPE
¥ IMAGE TYPE

indeterminate/benign (0 / 3)
- : i Select All
D indeterminate/malignant (0 / 2) Select None
malignant (3474 / 5714) clinical (88 / 99)
3 unknown (0 / 16028) (3 dermoscopic (0 / 28175)

» LESION DIAGNOSIS unknown (27366 / 41171)

CLINICAL ATTRIBUTES DATABASE ATTRIBUTES
» APPROXIMATE AGE » TAGS
» GENERAL ANATOMIC SITE » DATASET

» CLINICAL SIZE - LONGEST DIAMETER (MM)

I ended up finding around 500 malignant images that could be used for the machine learning model. As
there were many more benign images than malignant, I did not use as many benign images that were at
my disposal. This was to avoid bias in my machine learning model (which is where my model could
constantly predict benign, and as there are many more benign than malignant images it will have a very
high accuracy regardless of how good the actual model is). Therefore, I used around 500 benign images
as well. I downloaded all these images locally to prepare for the next ticket.

Having downloaded all the melanoma images locally, I divided them into two sets — benign and
malignant. Then these sets were further divided in a 9: 1 ratio into training and testing sets. The
majority of data in each set (around 450 images) were used for training the model, and the rest were
used to test and evaluate the performance of the model. I called the latter, smaller set the testing set and
the machine learning model never learnt from those images. This was so that I could test the model on
these ‘unseen’ images, to ensure that it will be able to perform on unseen data rather than just the data it
has learnt from.

Fortunately, I did not have to clean much of the data as the ISIC had given images in the correct size
and format whilst downloading. I just went through all of the data ensuring that there was nothing that
would cause an error, and I found nothing that would cause an error.

In this sprint I have managed to collect the data to develop the predictive features of my app. I have
made sure that the data is appropriate for the ML model, that the labels are correct for the model and
cleaned all the data so that it leads to an accurate ML model. The nature of these tickets mean that [was
testing the quality of the data as I carried out the tasks in the tickets

This sprint has worked on the following points specified in the design section:
- [l.a.1] Skin Classifier
- [l.a.2] Certainty of Prediction

3. Sprint 2 — Incorporation of ML model into app

Yellow

(O I - Identify best theoretical model for
training

Red

(O It - Train model and look at
performance

Red

O Il - Iterate through models, finding
the optimal one (best accuracy
without compromising accuracy on
validation data)

Red

O I - Optimise model

Yellow

O Il - Import developed model into swift

Yellow

O Il - Ensure model can take an input
and provide a (valid) output in swift
app

As shown in the design section, I identified that a classification machine learning model (implemented
using convolutional neural networks) would be the best for the problem of classifying melanoma.
Fortunately, swift has its own “Create ML” application which massively assists in training those
models. Therefore, I downloaded create ML and learnt how to use it in order to train a classification
model using the data I collected in the sprint before.

Using create ML I created a new classification model that takes in an image and returns the
classification of that image as well as the certainty of the prediction. First, I checked the training
worked as [had previously perceived by training a model on a small dataset (only 50 images for each
class). This resulted in a model that had around a 60% accuracy, which is essentially just guessing. The

training accuracy was relatively high, but the validation and test accuracy weren’t implying there was a
lack of data for the model to find correlations between the data and classes.

After doing some trial training, I trained a model with all the data I had (just the raw, unmanipulated
data). This resulted in the model training on the data summarised below.

Data

2 1,047 Auto 2 94
C Split f n Training ata C sses tems

Below is the summary of the model after training for 25 iterations. Training took just under 3 minutes
with the raw data, and the model performed relatively well for the first attempt. However, the 81%
accuracy for the test data simply wasn’t good enough for a melanoma classifier, as that implies around
11in 5 images would be classified wrong. The fact that the training accuracy was just 86% showed that
the model was not overfitting to the data, and that significant improvement would be possible with
more data.

86% 83% 81%
Training Validation Testing
Activity Sep 30, 2021
Testing Completed 10:08 AM

melanomaClassifier600 1

Testing Started 10:08 AM
melanomaClassifier600 1

Training Completed 10:08 AM
25 iterations

raining Started 10:06 AM
25 iterations

esting Data Added 10:05 AM
Melanoma_Test

Data Source Created 10:05 AM
Melanoma_Test

Training Data Added 10:05 AM
Melanoma_Train

Data Source Created 10:05 AM
Melanoma_Train

>roject Created
melanomaClassifier600

Model Source Created

melanomaClassifier600 1

I realised after training the first melanoma classifier model that more data is needed to create a more
accurate model. Therefore, I decided to rotate all the images and therefore increase my data 4-fold.
This works as the orientation of the image doesn’t affect whether an image contains melanoma or not,
and these images, to a computer, are completely new. Therefore, the computer focuses more on
learning what patterns (in whatever rotation) makes a mole cancerous rather than learning via brute
force. Fortunately Create ML has an inbuilt feature that rotates all the images and then trains on that
data, and so I used that feature. The training and test data remained the same as the previous iteration.
The results of the training are summarised below.

97% 85% 91%

Training Validation Testing

Testing Completed 10:24 AM
melanomaClassifier600 2

Testing Started 10:24 AM
melanomaClassifier600 2

Training Completed 10:24 AM
25 iterations

Training Started 10:12 AM
25 iterations

Testing Data Added 10:12 AM
Melanoma_Test

Training Data Added 10:12 AM
Melanoma_Train

Model Source Created 10:12 AM
melanomaClassifier600 2

Data Source Created 10:05 AM
Melanoma_Test

Data Source Created 10:05 AM
Melanoma_Train

Project Created 9:38 AM
melanomaClassifier600

This model performed significantly better, achieving 91% accuracy on the training data. It also took
significantly longer to train (12 minutes) due to the sheer volume of the data being used. Although this
model is not good enough for a final application, I noticed something whilst manually testing some
data. Some of the images that were classified wrong had significantly lower certainty values than the
ones that were classified correctly, therefore I could use the certainty values to let the user know how
likely it is that a certain prediction is valid. Below I’ve shown two cases — the left one is a correctly
classified image, the right one is a false positive — and the images show the certainties of those
predictions. I will probably make the model better later on if I have more time, but for now this model
is sufficient.

Malignant Malignant
99% confidence 83% confidence

Benign
16% confidence

The model was optimised through iteration (ticket 3), I will attempt to optimise the model more later on
if I have time (as the current model is good enough).

Having created the melanoma detection model using create ML, I exported it as a “.mlmodel” file from
createML. This file lets me use the model as a class inside swift. Below are the inputs and outputs |
specified for the model earlier.

Input Output
image classLabelProbs
Image (Color 299 x 299) Dictionary (String = Double)
Flexibility Description
299... x 299...

Probability of each category
Description

Input image to be classified

classLabel

String

Description

Most likely image category

My first attempt to use the model is shown below.

Created by Yadav, Aasmaan (SPH) on 30/09/2021.

import Foundation

10 import Vision
import CoreML

let model = try VNCoreMLModel(for: melanomaModell_91_().model) 2 . @ Call can throw, but errors cannot be thrown out of a global variable ini...
let request = VNCoreMLRequest(model: model, completionHandler: myResultsMethod)

let handler = VNImageRequestHandler(url: URL(fileURLWithPath: "ISIC_1135213.jpg"))

handler.perform([request]) 2 © Call can throw but is not marked with ‘try’

func myResultsMethod(request: VNRequest, error: Error?) {
guard let results = request.results as? [VNClassificationObservation]
else { fatalError("huh") }
for classification in results {
print(classification.identifier, // the scene label
classification.confidence)

This attempt failed because I was attempting to input images into the model which had a .jpg format.
Instead, I had to convert the image into a “CVPixelBuffer” format, which is essentially a format that
contains a matrix of numbers representing images. The melanoma classifier I made had to necessarily
take that as an input, so I had to make subroutines that converted normal images to CVPixelBuffers.
The code for this is shown below.

8 import Foundation
9 dimport UIKit

11 extension UIImage {

13 func resizeTo(size: CGSize) -> UIImage? { //resizes an image to the specified size

14 UIGraphicsBeginImageContextWithOptions(size, false, ©0.0) // configures the drawing environment for
rendering into a bitmap

15 self.draw(in: CGRect(origin: CGPoint.zero, size: size)) //redraws the image, scaling it to fit the
specified size

16 let resizedImage = UIGraphicsGetImageFromCurrentImageContext()! //returns the image from the
bitmap context

17 UIGraphicsEndImageContext() //clears the rendering work stack

18 return resizedImage //returns resized image

19 }

20

21 func toBuffer() -> CVPixelBuffer? { //returns the CVPixelBuffer format of an image. Converting a

UIImage to a CVPixelbuffer

22 let attrs = [kCVPixelBufferCGImageCompatibilityKey: kCFBooleanTrue,
kCVPixelBufferCGBitmapContextCompatibilityKey: kCFBooleanTruel] as CFDictionary

23 var pixelBuffer : CVPixelBuffer?

24 let status = CVPixelBufferCreate(kCFAllocatorDefault, Int(self.size.width), Int(self.size.height),

kCVPixelFormatType_32ARGB, attrs, &pixelBuffer) //alter the kCVPixelFormat type to ensure
model is classifying optimally

26 guard (status == kCVReturnSuccess) else {

27 return nil

28 }

29 CVPixelBufferLockBaseAddress(pixelBuffer!, CVPixelBufferLockFlags(rawValue: 0))

30 let pixelData = CVPixelBufferGetBaseAddress(pixelBuffer!)
32 let rgbColorSpace = CGColorSpaceCreateDeviceRGB()

34 let context = CGContext(data:pixelData, width: Int(self.size.width), height:
Int(self.size.height), bitsPerComponent: 8, bytesPerRow:
CVPixelBufferGetBytesPerRow(pixelBuffer!), space: rgbColorSpace, bitmapInfo:
CGImageAlphaInfo.noneSkipFirst.rawValue)

36 context?.translateBy(x: @, y: self.size.height)

37 context?.scaleBy(x: 1.0, y: -1.0)

38

39 UIGraphicsPushContext(context!)

40 self.draw(in: CGRect(x: @, y: O, width: self.size.width, height: self.size.height))
A UIGraphicsPopContext()

42 CVPixelBufferUnlockBaseAddress(pixelBuffer!, CVPixelBufferLockFlags(rawValue: 0))
43

A return pixelBuffer

5 }

46}

47

After creating those functions, I created a very basic view page which could display melanoma images
and call a subroutine when a button is pressed. That subroutine would be responsible for using the
melanoma model and returning a classification and certainty of classification for a certain image. This
subroutine would make use of the CVPixelBuffer converter function mentioned above to ensure that
the input to the melanoma model is correct.

Code for view model is shown below.

8 import SwiftUI
10 struct ContentView: View {

12 //display variables to do with the output of image classification

: @State private var currentImageName = "testImageMalignanti"
@State private var classificationLabel: String = ""

15 @State private var confidence: Double = @

//creates instance of imageClassifier class
8 let imageClassifierInstance = imageClassifier()

20 var body: some View {
21 VStack {
2 //displaying chosen image, as well as information about classification of that image
Image(currentImageName)
.resizable()
.frame(width:UIScreen.main.bounds.width*(3/4), height:UIScreen.main.bounds.height*(1/4))
.frame(width:200,height:200)

28 //button to call subroutine to classify image

29 Button("Classify") {

30 (self.classificationLabel, self.confidence) =
imageClassifierInstance.performImageClassification(imageName: currentImageName)

b

Text(classificationLabel)
34 .padding()
35 .font(.largeTitle)

Text(String(confidence))
.padding()
.font(.largeTitle)

45 struct ContentView_Previews: PreviewProvider {
46 static var previews: some View {

47 ContentView()

48 }

In this piece of code, I create a view to show something on an iPhone screen. I minimise using any
logic in this file, as I do not want that logic to interfere with the user interface code. Therefore, I put the
logic for the subroutine that classifies the image in a class called imageClassifier (line 18), and called a
subroutine that that class contains on line 30 instead of creating the subroutine in this file. The code for
the imageClassifier class is shown below.

g import Foundation
9 dimport SwiftUI

10

11 class imageClassifier {

12

13 //creating an instance of the trained melanoma model.

14 let model = melanomaModell_91_() 'init()" is deprecated: Use init(configuration:) instead and handle errors appropriately.

15

16 //performs classification on the image specified, returning the output classification as well as the
certainty of the classification.

17 func performImageClassification(imageName: String) -> (String, Double) {

18

19 guard let img = UIImage(named: imageName),

20 let resizedImage = img.resizeTo(size: CGSize(width:600, height:600)),

21 let buffer = resizedImage.toBuffer() else {

22 return ("errorl", 101.1)

23 }

24

25 let outputOptional = try? model.prediction(image: buffer)

26

27 if let output = outputOptional {

28

29 if let malignantProbability = output.classlLabelProbs["Malignant"] {

30 return (output.classLabel, malignantProbability)

31 }

32 return (output.classlLabel, 101.3)

33 }

34

35 return ("error2", 101.2)

36 }

37

38}

In this class I first import the machine learning model I had created (which I had name
MelanomaModel1_91_ - referring to its accuracy in the testing phase). Then I convert the image sent in
from the view into the CVPixelBuffer format. If that has been done successfully the subroutine will
make a prediction using the melanoma model and return a prediction along with the certainty of that
prediction. Below I have shown the state of the app, from a user’s point of view, after this ticket.

)
1

10:29 T - 10:29

) Classify
Classify

Malignant

0.0 0.99645313618702

The app has a very basic but functional look. You have an image, and you can press classify to classify
it, as well as return the certainty of that prediction.

To test that everything is working correctly, I manually inputted the images used by the app back into
the create ML model, to ensure that the model was still making the same predictions with the same
certainty as before. This also helped me make sure that I had not got the CVPixelBuffer converter
wrong (ie the values for ‘red’ were not swapped with thee values for ‘alpha’ in the image
representation). I checked the values, and everything worked as expected.

In this sprint [have created the machine learning model that is the main feature of the app. This sprint
was mostly iterative, and so involved me finding ways to improve the current model rather than testing
it to find errors. I did test the Ul and the interaction of the model with the user, which seems to work at
this point. I will continue testing what I have created so far after each sprint to make sure nothing new
has affected the current development.

At this point I also decided to get some feedback from Dr Lyman, who expressed his concern for the
accuracy of the initial model (81% testing accuracy). This is what caused me to further improve the
model, so that it has more than 90% accuracy. He then mentioned that 91% testing accuracy was very
good for an initial app, but if the app was to go into production it would have to have at least 99%
accuracy due to the sensitivity of the topic.

This sprint has worked on the following points specified in the design section:
- [l.a.1] Skin Classifier
- [l.a.2] Certainty of Prediction

4. Sprint 3 — Views Creation

Green

O Il - Create empty views for all pages
specified in Design document

Yellow

(O Wi - Add functional buttons that
allow the correct pages to switch to
other pages

(O - Add dummy text and buttons to
pages to give general structure of
the app (not finished aesthetic)

Green

O Il - Ensure every button that can be
functional at this stage is functional

I created new view files in swift, with each file having a name corresponding to the view it specified
from the design document. All the files I created for this ticket are shown below.

v Views
s Dashboard.swift
s SkinClassifier.swift
s FunctionallmageStorage.swift
s Camera.swift
s InformationPage.swift
s Reminders.swift
s WeatherRisks.swift

s MelanomaScanApp.swift

I kept each view to a minimum, only adding some text that helped me identify what view it was, so that
I could check that whilst testing. Also, it made no sense to add more UI with no functional code
developed for that view. The code and look of each of the views is shown below.

import SwiftUI

struct WeatherRisks: View {
var body: some View {
Text("Weather Risks Page")
}
}

struct WeatherRisks_Previews: PreviewProvider {
static var previews: some View {
WeatherRisks ()
}

Weather Risks Page

In order to create functional buttons that can switch between pages, I decided to use navigation views.
This type of view allows me to go to different pages, and then have an inbuilt ‘back’ button that leads
back to the previous page automatically. I decided to make my dashboard the ‘root’ navigation view,
meaning that if you press the back button continuously, it will lead you to the dashboard. The code and
look of the dashboard view is shown below.

7

8 import SwiftUI

9

10 struct Dashboard: View {

" var body: some View {
12
13 // a navigation view allows for links to other pages
14 NavigationView {
15 VStack {
16 Text("Dashboard")
17
18 //1links to other pages.
19 NavigationLink("To Skin Classifier", destination: SkinClassifier())
20 .padding()
21
22 NavigationLink("To Functional Image Storage", destination:
FunctionalImageStorage())
23 .padding()
24
25 NavigationLink("To Camera", destination: Camera())
26 .padding()
27
28 NavigationLink("To Information Page", destination: InformationPage())
29 .padding()
3
31 NavigationLink("To Reminders", destination: Reminders())
32 .padding()
33
34 NavigationLink("To Weather Risks", destination: WeatherRisks())
35 .padding()
36 }
37 }
38
39 }
45 }
Al
42 struct Dashboard_Previews: PreviewProvider {
43 static var previews: some View {
7 Dashboard()
45 }
46}
47
1:17 T .- 1:17 T -
< Back
Dashboard
To Skin Classifier
To Functional Image Storage
To Camera
To Information Page Classify
To Reminders
To Weather Risks 0'0

Now the app has a dashboard page that can lead to any other page and then lead back to the dashboard
with ease. | tested this by using the app, opening all the pages and making sure that I could return to the
dashboard from all the pages.

[used navigation link buttons to create pathways between pages, making sure that the app could
traverse across pages as required. The code for each of the links followed the form shown below.

NavigationLink("To Camera (choose new img)", destination: Camera())

For this ticket I tested the buttons I made previously by clicking on them and making sure every button
worked and returned me to the dashboard with the back buttons. I also went through my design
document to check that every button that can currently have a functional purpose existed.

This sprint was not very algorithmically complex, and so did not require many tests. I ensured that all
the buttons I created worked, and let five different people use the app in an attempt to find any bugs,
and fortunately none were found.

This sprint has worked on the following points specified in the design section:
- General structure of app

5. Sprint 4 - Images

Red

(O IV - Allow app to import images
from camera roll and store themin a
temporary place

Yellow

(O IV - Feed imported image to
machine learning model and display
output functionally

Yellow

(O IV - Ensure output contains the
certainty of prediction

Green

O IV - Display warning about how the
machine learning model is
predicting based on some data and
is not always correct. Reference
user to certified websites [people.

Yellow

(O IV - Format output page in an
aesthetically pleasing way (similar to
design document page)

In order to make sure my app works on images of skin taken from iPhone, I decided to allow users to
import already taken images from their camera roll into the app.

32 //displaying chosen image, as well as information about classification of that image
Button(action: {
changeClassificationImage = true
openCameraRoll = true

7 }, label: {
if changeClassificationImage == true {
Image(uiImage: imageSelectedFromCameraRoll)
(.resizable()
.frame(width: 250, height: 250)
} else {
Image(initialImageName)
.resizable()
//.frame(width:UIScreen.main.bounds.width*(3/4), height:UIScreen.main.bounds.height*(1/4))
.frame(width:250,height:250)

1)

The code above creates a button that displays an image on the skin classifier view. The image
represents what image the user has currently selected to classify, and if the image is clicked the camera
roll is opened (which is done by the code shown below).

}.sheet(isPresented: $openCameraRoll, content: {
) ImagePicker(selectedImage: $imageSelectedFromCameraRoll,sourceType: .photoLibrary)

1)

This calls the class “ImagePicker”, which contains the code to open a sheet that shows all the images
the user can select from. [have shown the code in “ImagePicker” below.

import Foundation
import SwiftUI
import UIKit

struct ImagePicker: UIViewControllerRepresentable {

@Binding var selectedImage: UIImage
QEnvironment(\.presentationMode) private var presentationMode

//defines the source of the UIImagePickerControllere
var sourceType: UIImagePickerController.SourceType = .photoLibrary

//Makes the controller, allowing the app to interact with the photo library
func makeUIViewController(context: UIViewControllerRepresentableContext<ImagePicker>) -> UIImagePickerController {

let imagePicker = UIImagePickerController()
imagePicker.allowsEditing = false
imagePicker.sourceType = sourceType
imagePicker.delegate = context.coordinator

return imagePicker
}

func updateUIViewController(_ uiViewController: UIViewControllerType, context: Context) {
// add stuff later if needed
}

//Actual picking of the image
final class Coordinator: NSObject, UIImagePickerControllerDelegate, UINavigationControllerDelegate {

var parent: ImagePicker

init(_ parent: ImagePicker) {
self.parent = parent

}

//makes sure image is returned correctly after it is picked. Saving the image after it is picked.
func imagePickerController(_ picker: UIImagePickerController, didFinishPickingMediaWithInfo info: [UIImagePickerController.InfoKey : Any]) {

if let image = info[UIImagePickerController.InfoKey.originallmage] as? UIImage {
parent.selectedImage = image

}
parent.presentationMode.wrappedValue.dismiss()
}
}
func makeCoordinator() -> Coordinator {
Coordinator(self)
}

This ticket was relatively simple having done the ticket before. I just changed the image selected in the
skin classifier view to the one chosen by the user. I also had to make sure the app updated the image

sent to the skin classifier every time it was changed, and therefore had to make the image into a state
object.

//picture picker

@State var changeClassificationImage = false
@State var openCameraRoll = false

@State var imageSelectedFromCameraRoll = UIImage()

Button("Classify") {
showingClassificationWarning = true
(self.classificationLabel, self.confidence) =
imageClassifierInstance.performImageClassification2(image: imageSelectedFromCameraRoll)

For this ticker I had to design a function that would take in the raw, unadjusted certainty value from the
melanoma classifier model and convert it into a normalised, usable percentage value. The output of the
melanoma classification model is the classification of the image, alongside a value between 0 and 1.

A value of 0 would represent 100% certainty in the image containing a benign mole, and a 1 would
represent a 100% certainty in the image containing melanoma. This value requires a lot of explaining
and is not very usable/intuitive, so I created the function shown below to convert from this value into a
percentage value between 0 and 100, that accompanies the classification of the image. This new value
shows how certain the prediction is on that particular class (ie 34% certain about melanoma being
present rather than a value of 6.7).

The code for this function is shown below.

//takes the raw certainty value from the melanoma ml model, and converts it into a usable certainty
func certaintyFunction(oldCertainty: Double) -> Double {
//function to take in pure probability of prediction and return a certainty (ie measure from 50% rather than from 0%
var workingCertainty: Double = oldCertainty - 0.5
workingCertainty = workingCertainty * 2
workingCertainty sqrt(workingCertainty * workingCertainty)
workingCertainty = workingCertainty * 100

return workingCertainty

The screenshots below show the UI after tickets 1,2 and 3. I have also made sure that my app is
compatible with apple’s dark mode, and the UI in dark mode is also shown below. The third image
shows the image selector sheet, allowing the user to choose another image for classification.

17:47 W B
< Back

Skin Classifier Skin Classifier

Test image set 1

Classify

Malignant Malignant
74.6 74.6

To Camera (choose new img)
To Information Page (change risk profile)

To implement this ticket, I decided to use iOS alerts. This would allow me to create an alert that the
user must read before going on to see the result of the classification, ensuring that the user is aware of
the shortcomings of this implementation. I decided that it would be ineffective and unusable to put the
links to certified websites in the alert, and instead will put them in the information page.

.alert(isPresented: $showingClassificationWarning) {
Alert(
title: Text("[MESSAGE ABOUT ML ALGORITHM NOT BEING PERFECTI]"),
message: Text("Message"),
dismissButton: .default(Text("I understand"), action: {

1)

[MESSAGE ABOUT ML
ALGORITHM NOT BEING
PERFECT]

Message

I decided that this would be best done after all the functional parts of the app are developed. This
allows me to functionally change something majorly down the line without having to re-do the
aesthetics of the app due to that change.

In this sprint I focussed on ensuring that the skin classifier page has all the functionality that was
mentioned in the design document. I will make the page (and the rest of the app) more aesthetically
pleasing once the functionality of the app is finished. To further test the sprint as a whole (having tested
each ticket individually in the ticket section), I gave the app to 5 people to attempt to break. There were
no major errors, but there was one problem that no image would show if the user exited the image
selector without clicking on an image — something I will fix in the aesthetics sprint.

This sprint has worked on the following points specified in the design section:
- [l.a.1] Skin Classifier
- [1.a.3] Functional Image Storage

6. Sprint 5 — Risk Factors and Database

Red

O V - Set up apple's core data
framework

Yellow

O V - Make data structure to store all
the risk factors mentioned in design
document

Yellow

(O V- Allow user to input their risk
factors

Green

(O V - Validate input data

Red

O V - Use apple's core data to store
data after the app is closed

Green

O V - Ensure data can be loaded back in
after the app is closed

Yellow

O V - Information displayed for users to
self diagnose (+ sources of all that
information)

I decided to use apple’s Core Data framework to have data persistence on my app. The framework is
quite large, and requires a lot of setting up, but is very compatible with swiftUI and is scalable if [want
to further improve the app in the future.

To set up Core Data within my app, I decided to create a data structure with only one string being
stored. This allowed me to develop my understanding of the framework easily, and it seemed like a
good way to integrate Core Data, as I could always add more data in the future with relative ease.

I created a data structure that is represented below. It only contains an attribute called “name”, which I
used to test how everything works, and whether it works at all.

Name name

Attributes
[RiskFactors Type String a
Attribute Type ~ Optional Transient
@ name String < Derived
Allows Cloud Encryption
Default Value Default String
Default
+ —
Validation < <
Relationships Min Length Max Length
Reg. Ex.
Relationship ~ Destination Inverse
Advanced Index in Spotlight
Preserve After Deletion
Deprecated
+ Spotlight Store in External Record File
User Info
Fetched Properties
Key ~ Value
Fetched Property ~ Predicate
+
+ Versioning
Hash Modifier
Renaming ID

Then I created a class called “CoreDataManager”, which is responsible for all the requests to fetch,
save and delete data from memory. It allows me to access the Core Data model shown above. In the
class I created two basic functions — one to save the name attribute, and one to fetch all the saved
attributes.

import Foundation
import CoreData

class CoreDataManager {

//responsible for loading in the model
let persistentContainer: NSPersistentContainer

init() {
persistentContainer = NSPersistentContainer(name: "RiskFactorsPersistence")
persistentContainer.loadPersistentStores { (description, error) in
if let error = error {
fatalError("Core Data store failed \(error.localizedDescription)")
}

2 }
25 //saves the current risk factor (only the name in this case)
func saveRiskFactorName(name: String) {
//instance of riskFactors

let riskFactors = RiskFactors(context: persistentContainer.viewContext)
riskFactors.name = name

do {
32 try persistentContainer.viewContext.save()
} catch {
print("Failed to save risk factors \(error)")
}
}

//returns all the saved ages
func getAllNames() —> [RiskFactors] {

let fetchRequest: NSFetchRequest<RiskFactors> = RiskFactors.fetchRequest()

do {

return try persistentContainer.viewContext.fetch(fetchRequest)
} catch {

return []
}

Next, I implemented some basic Ul in the InformationPage file, which allowed me to test everything |
had currently built. The code is shown below.

import SwiftUI
struct InformationPage: View {

let coreDM: CoreDataManager

@State private var riskFactorName: String = "" //convert to Intlé later
//use a viewmodel for the variable below again.

//state is used to make sure user interface is in sync with the data.
@State private var names: [RiskFactors] = [RiskFactors]()

//again into a VM model
private func populateNames() {
names = coreDM.getAllNames()

}

var body: some View {
2 VStack {
) //input risk factors and save using the save button
TextField("Enter name", text: $riskFactorName)
.textFieldStyle(RoundedBorderTextFieldStyle())
2 Button("Save") {
//create a view model layer, and call this from that class -NOT THE UI
coreDM.saveRiskFactorName(name: riskFactorName)
populateNames ()
}

List(names, id: \.self) { name in
Text(name.name ?? "")

}

}.padding()
.navigationBarTitle("Information Page")

.onAppear(perform: {
populateNames()
1)

}

struct InformationPage_Previews: PreviewProvider {
static var previews: some View {
InformationPage(coreDM: CoreDataManager())
}

For testing purposes, I did include some logic in the view file. This is highlighted by the comments and
will be moved to a different class in a different file later on, after making sure everything works well.

Below I have included a few screenshots of what this code has accomplished. It has allowed me to
enter a string and press save. The string in the text box is saved to memory when the save button is
pressed and shown in a list below. The saving to memory allows me to close the app, restart my phone,
and the data will still be present in the list.

Information Page Information Page Information Page

New String New String

Premier Information Premier Information Premier Information
Wow it actually works Wow it actually works Wow it actually works

New String

“String" Strings Stringent “String" Strings Stringent
gwer tyuiopm@gwerT T 'ty u.iol@p
Sl 151 NGl B RGN N N A SN 1SN NC REN RGN Nl N Ak A
< B B =l R el i il <@ < BB = R e i il <

space return space return

¢ ¢

I also had to make sure that data can be deleted, so I implemented a new function in the Core Data
manager to do just that. I also made sure to include “do { } catch { }” in all these functions to make
sure that there is no case in which the app will crash. If something wrong does happen, the app will
display an error but not execute the erroneous code. Also, I made sure in the following code to roll back
to the previous working state of data storage if some error does occur.

//deletes from memory
func deleteName(riskFactor: RiskFactors) {

persistentContainer.viewContext.delete(riskFactor)

do {
try persistentContainer.viewContext.save()
} catch {
persistentContainer.viewContext.rollback()
print("Failed to save context \(error)")

//displays names in a way that they can be deleted
List {
ForEach(names, id: \.self) { name in
Text(name.name ?? "")
}.onDelete(perform: {indexSet in
indexSet.forEach{ index in
let name = names[index]
//delete the name using core data manager
coreDM.deleteName(riskFactor: name)
populateNames()

})

Below are some screenshots of what this code looks like in the app.

Information Page

Useful Info
Useful Info 2
Useful Info 3
USELESS

Useful Info 4

Information Page

Useful Info

Useful Info 2

Useful Info 3
3S

Useful Info 4

Information Page

Useful Info

Useful Info 2

Useful Info 3

Useful Info 4

I decided to split this ticket into two, as it was much more challenging than I had thought it would be
previously. I needed to make sure that every risk factor in the app was editable, so I decided to make a
page that would open once you click on any risk factor. This page would allow you to update values for
that risk factor. The code for the Ul page is shown below.

import SwiftUI
struct RiskFactorDetailTESTVIEW: View {

let riskFactor: RiskFactors
@State var riskFactorName: String = ""
let coreDM: CoreDataManager

var body: some View {
VStack {

TextField(ris

(tFi

kFactor.name ?? "", text: $riskFactorName)
yle(RoundedBorderTextFieldStyle())

sEmpty {
riskFactorName

}.padding()

Text("ADD MORE INFO ABOUT RISK FACTOR")
.padding()

}

struct RiskFactorDetailTESTVIEW_Previews: PreviewProvider {
static var previews: some View {
let riskFactor = RiskFactors()
RiskFactorDetailTESTVIEW(riskFactor: riskFactor, coreDM: CoreDataManager())

displays names i way that they can be deleted
List {
ForEach(riskFactorNames, id: \.self) { name in

k(destination: Risk torDetail TESTVIEW(r kFactor: name reDM: yreDM) , abel: xt(r

NavigationLink(destination: RiskFactorDetailTESTVIEW(riskFactor: name, coreDM: coreDM), label: {
Text(name.name 2?2 "")

1)

}.onDelete(perform: {indexSet in
indexSet.forEach{ index in
let name = riskFactorNames[index]
delete the name using core data anager
coreDM.deleteName(riskFactor: name)
populateNames()

I also added code that enables the risk factors to be updated, rather than just being able to create new
ones and delete old ones.

func updateRiskFactor() {

do {
try persistentContainer.viewContext.save()
} catch {
persistentContainer.viewContext.rollback()

}

In my testing I found a slight error with the framework — it would not properly update the values saved
via core data when a page was reloaded. In order to fix this, I made a state variable that changes value
whenever data is updated — causing the view to refresh the data and not to used pre-stored values. The
code for this is shown below.

@State private var needsRefresh: Bool = false

}.listStyle(PlainListStyle())
.accentColor(needsRefresh ? .black: .white)
Button("Update") {
if IriskFactorName.isEmpty {
riskFactor.name = riskFactorName
coreDM.updateRiskFactor()
needsRefresh.toggle()

The following images show what this change looks like in the app.

Information Page Information Page

Age Age: 17

Gender Gender
Skin Type Skin Type

Number of moles ADD MORE INFO ABOUT RISK FACTOR Number of moles

€8 15 1 B 1S B G
() £ & @ "
! o &

return

¢

In the app’s information page, I had to display risk factor names, along with the values which the user
has input into the app. In order to do this, | had to restructure how I was going to store data. I changed
my risk factor storage entity in my core data model to include two attributes to store — the “name” and
the “value”.

Attributes
(3 RiskFactors

Attribute ~ Type
B name String s
B value String ¢

(=] Default

The name stores the name of the risk factor currently being stored, and the value stores the actual data
related to the risk factor. As the value is a string type, [will need to validate the input in the future to
ensure it can be converted between string and the desired type without any errors.

As the data model was changed, I also had to edit all my read, write, delete and update subroutines.
Furthermore, I had to completely restructure my view to accommodate this new data structure, and also
to make it significantly easier to implement the next ticket (the code for which is included in the next
ticket, as it overlapped with this one).

A major problem with my implementation of core data before was that any amount of risk factors could
be added by the user. This is not what would happen in the final app, as there will be a select set of risk
factors to enter, that can be used by different algorithms. In order to solve this I removed the option to
add any risk factors, and instead populated the risk factors automatically when the app starts.

To do this I created risk factor entities for every item in the following list when the view.
let stringListOfRiskFactors = ["Age", "Gender", "Skin Type", "Number of Moles"]

Then I called a function to create those risk factors when the app started.

private func populateRiskFactors() {
riskFactorsList = coreDataManager.getAllNames()

}

.onAppear (perform: {
populateRiskFactors()
})

func getAllNames() -> [RiskFactors] {
let fetchRequest: NSFetchRequest<RiskFactors> = RiskFactors.fetchRequest()

do {

return try persistentContainer.viewContext.fetch(fetchRequest)
} catch {

return []
}

Once those risk factors are retrieved, I displayed them in a list, with the risk factor’s name as the main
label, and the value of that risk factor displayed as well.

ForEach(riskFactorsList, id: \.self) { riskFactor in
NavigationLink(destination: RiskFactorDetail(riskFactor: riskFactor, coreDM: coreDataManager, needsRefresh:
$needsRefresh), label: {
HStack {
Text(riskFactor.name 2? "")
Spacer()
Text(riskFactor.value ?? "")

})
}

//This is just to make sure that everything stays up to date.
}

.listStyle(PlainListStyle())

.accentColor(needsRefresh ? .black: .white)

Every item in the list is also clickable, leading to another view that allows you to edit the value of that
risk factor. The code for that view is shown below.

import SwiftUI
struct RiskFactorDetail: View {

let riskFactor: RiskFactors

@State var riskFactorName: String = ""
let coreDM: CoreDataManager

@Binding var needsRefresh:Bool

var body: some View {
VStack {

Text(riskFactor.value ?? "")

TextField(riskFactor.value ?? "", text: $riskFactorName)
.textFieldStyle(RoundedBorderTextFieldStyle())
.padding()

Button("Update") {
if !riskFactorName.isEmpty {

riskFactor.value = riskFactorName
coreDM.updateRiskFactor()
needsRefresh.toggle()
}
}.padding()

Text("ADD MORE INFO ABOUT RISK FACTOR")
.padding()

}.navigationBarTitle(riskFactor.name ?? "")

}

struct RiskFactorDetailTESTVIEW_Previews: PreviewProvider {
static var previews: some View {
let riskFactor = RiskFactors()
RiskFactorDetail(riskFactor: riskFactor, coreDM: CoreDataManager(), needsRefresh: .constant(false))

In the information page I decided to add a “reset risk factors” button that would allow users to
completely reset all their risk factors in case something goes wrong. The button works by deleting all
the information in the data store, then recreating that data with empty values for all the risk factors
given in the list above.

Button("Reset all risk factors") {
// coreDataManager.saveRiskFactorValue(stringValue: riskFactorValue)
coreDataModel.resetRiskFactors(coreDataManager: coreDataManager, listOfRiskFactors: stringlListOfRiskFactors)
populateRiskFactors()
//needsRefresh.toggle()
}.padding()
func resetRiskFactors(coreDataManager: CoreDataManager, listOfRiskFactors: [Stringl) {

coreDataManager.deleteAllRiskFactors()

for item in listOfRiskFactors {
coreDataManager.saveRiskFactorValue(stringValue: item)

¥

func deleteAllRiskFactors() {
let allRiskFactors: [RiskFactors] = getAllNames()

for savedRiskFactor in allRiskFactors {
persistentContainer.viewContext.delete(savedRiskFactor)
}

do {
try persistentContainer.viewContext.save()
} catch {
persistentContainer.viewContext.rollback()
print("Failed to save context \(error)")

All this creates the screenshots below, showing how the app is now able to take in a set number of
inputs, store the data in memory and reuse it when the app is reopened.

Information Page
Age

Gender

Skin Type

Number of Moles

Number of Moles

ADD MORE INFO ABOUT RISK FACTOR

3 15 16} A BSE 1= 0
£ & @ "
X

return

¢

Information Page
Age

Gender

Skin Type

Number of Moles

Information Page

Age
Gender
Skin Type

Number of Moles

In order to make sure all the data was correct for each risk factor, I decided to implement “pickers”
which allow the user to select from a set of values from their input, rather than being able to enter
anything.

I also realised at this point that I would need to add a new attribute to my data model called
“numericalRiskValue”, which is a value between 0 and 5. This value is used to calculate how much risk
a certain factor gives (with 0 being no extra risk, and 5 being high additional risk).

To make sure the correct type of data was inputted for every risk factor, I created a function that returns
possible options for every risk factor (code shown below).

func returnStringlListOfRiskFactors(name: String) -> [String] {
if name == "Age"{

return ["0-9", "10-19", "20-39", "40-69", "70-99", "100+"]

// var output: [String] = []
/! for i in 0...130 {
// output.append(String(i))
// }
3% // return output|
} else if name == "Gender" {
return ["Male", "Female", "Other"]
} else if name == "Skin Type" {

return ["Type 1", "Type 2", "Type 3", "Type 4", "Type 5", "Type 6"]

} else if name == "Eye Colour" {

return ["dark", "light brown", "blonde", "red/red-blonde"]
} else if name == "Hair Colour" {

return ["dark", "blue/blue-grey", "green/grey/hazel"]
} else if name == "Number of Moles" {

return ["0-20", "20-50", "50-100", "100+"]
} else if name == "Freckles" {

return ["Present", "Absent"]
} else if name == "Family History" {

return ["None", "1 member", "more than 1 member"]
} else if name == "Diseases and Conditions" {

return ["Inflammatory Bowel Disease (IBD)", "Human Immunodeficieny Virus (HIV)", "IBD and HIV", "None"]
} else if name == "Body Mass Index" {

return ["<18.5", "18.5-25.9", "26-29.9", "30-34.9", ">35"]
} else {

return ["not configured"]

Then I made the page where you can edit the value of the risk factor modular, so I could just pass the
name of the risk factor in, and it would return all the possible values I could choose from. This allows
the user to choose any risk factor and update its value, and because there are only certain values the
user can choose from, the input is validated.

import Swiftul
struct RiskFactorDetail: View {

let riskFactor: RiskFactors

let coreDM: CoreDataManager

let riskFactorsModel = RiskFactorsModel()
@Binding var needsRefresh: Bool

@State var whichPickerToShow: String

@ e var riskFactorName: String = "*

/71 pPickerList i", "bye", "bycycle", "b bike"]

let tempPickerList: [String]

@State var selectedValue = ""

var body: some View {

Vstack {
Text((riskFactor.value ?? "") + " | Dev Value: " + String(riskFactor.numericalRiskvalue))

/1 TextField(riskFactor.value ?? "*, text: SriskFactorName)
/1 .textFieldStyle(RoundedBorderTextFieldStyle())

.padding()

Picker("Please choose a color", selection: $selectedValue) {
ForEach(tempPickerlList, id: \.self) {
Text($0)
}
}.padding()

Text("You selected: \(selectedValue)")

.padding()

Button("Update") {
if IselectedValue.isEmpty {
riskFactor.value = selectedValue
riskFactor.numericalRiskValue = riskFactorsModel.returnNumericalRiskValue(pickerName: whichPickerToShow, pickerChoice: selectedValue)
coreDM.updateRiskFactor()
needsRefresh. toggle()
}
}.padding()

Text("ADD MORE INFO ABOUT RISK FACTOR")
.padding()

}.navigationBarTitle(riskFactor.name ?? "")

I have already implemented this ticket in the previous 3 tickets. The app utilises core data for data
persistence, allowing data to be held even after the app is closed, and the phone is shut down.

I checked that information can be loaded back into the app after it is closed, and the app is restarted. I
ensured that the data from before is the same data loaded in after the app is opened again. Everything
worked as intended.

10:21 = -
< Back

Information Page

Age 40-69
Gender Female
Skin Type Type 3
Eye Colour dark
Hair Colour blonde
Number of Moles 100+
Freckles Present
Family History more than 1 member
Diseases and Conditions IBD and HIV
Body Mass Index 26-29.9

Reset all risk factors

Risk Factor (/5): 3.0

In this sprint I created a system through which I could store data even when the app is closed and the
device it is running on is turned off. The testing for individual tickets was done throughout the sprint
(such as in ticket 6). Again, I let 5 people use the risk factors page to try break it. Fortunately, my testing
throughout the sprint managed to catch any errors that might have occurred. They did mention that I
should change the reset button to have a confirmation before resetting all risk factors (which I will do in
the aesthetics sprint),

This sprint has worked on the following points specified in the design section:
- [l.a.4] Risk Factors
- [1l.a.5] Self diagnosis

7. Sprint 6 - Camera

Yellow

O VI - Allow access to camera

Red

O VI - Integrate camera page into the
app

Yellow

O VI - Save the image that was taken

Green

(O VI -Import the image into the
machine learning model and get an
output

Green

O VI - Add overlay on top of camera to
centre possible melanoma and take a
better image for the ML model

Apple requires the app to request access to the camera before the app can access that piece of hardware.
Therefore, I had to ask for access to the camera in the app’s “Information Property List”. [added a
message along with my request saying, “The melanoma scanner requires access to the camera to take
photos of moles in app”. This will let the user know what the app needs access to the camera for.

Key Type Value
v Information Property List 16 items)
Privacy - Camera Usage Description The melanoma scanner requires access to the camera to take photos of moles in app
Localization native development region $(DEVELOPMENT_LANGUAGE)
$(EXECUTABLE_NAME)
$(PRODUCT_BUNDLE_IDENTIFIER)
6.0
$(PRODUCT_NAME)
$(PRODUCT_BUNDLE_PACKAGE_TYPE)
1.0
1

<>
©

HDHOOOOODODHOHOHOHNHOHODHO 0

Executable file

Bundle identifier

InfoDictionary version

Bundle name

Bundle OS Type code

Bundle version string (short)

Bundle version

Application requires iPhone environment
> Application Scene Manifest

Application supports indirect input events
> Launch Screen
> Required device capabilities
> Supported interface orientations

> Supported interface orientations (iPad)

Fortunately, I had already created much of the backend required to use the camera when I implemented
the image picker from the camera roll. To make sure that everything would work as I intended it to, I
added a button in the camera page that should open the camera, using the functions that I created in
sprint 4.

The code for basic camera access is shown below, along with screenshots of what the UI for the code
looks like.

import SwiftUI
struct Camera: View {

false
UIImage()

@State var openCamera

@State var shownImage
var body: some View {

VStack {
Text("Camera page")
.navigationBarTitle("Camera")

Button("Open Camera") {
openCamera = true

}

}.sheet(isPresented: $openCamera, content: {
ImagePicker(selectedImage: $shownImage, sourceType: .camera)

})
}

struct Camera_Previews: PreviewProvider {
static var previews: some View {
Camera()
}

“MelanomaScan” Would Like
to Access the Camera
The melanoma scanner requires

access to the camera to take photos of
moles in app

Camera page

Once the camera page is opened for the first time, the app will request for camera access as shown above.

Cancel

Retake Use Photo

The camera interface allows the user fo focus, zoom, adjust lighting, and also retake photos if they did not turn
out as expected.

To save the image, I started by displaying what was returned from the camera once a photo was taken.
The code and the Ul represented by that are shown below.

import SwiftUI
struct Camera: View {

@State var openCamera = false
@State var shownImage = UIImage()
@State var changeShownImage = false
let initialImageName = "initialImage"

var body: some View {

Vstack {
Text("Camera page")
.navigationBarTitle("Camera")

Button(action: {
changeShownImage = true
openCamera = true

}, label: {
if changeShownImage == true {

Image(uiImage: shownImage)
.resizable()

.frame(width: 250, height: 250)
} else {

Image(initialImageName)
.resizable()
.frame(width:250, height:250)

}
}H

}.sheet(isPresented: SopenCamera, content: {
ImagePicker(selectedImage: $shownImage, sourceType: .camera)

3

Camera Camera

Camera page

Camera page

LA

Cancel

At this point I realised that having another page for the camera is unnecessary and increases the
complexity for both me, and the user for no reason. Therefore, I decided to incorporate the camera
aspect of the app in the skin classifier view. I did this by giving the user an option to either use the
camera or choose from the photo library when choosing pictures. The code for this is shown below —

Button(action: {
showChooseCameraOrRollSheet = true

}, label: {
if changeClassificationImage == true {
Image(uiImage: imageSelectedFromCameraRoll)
.resizable()
.frame(width: 250, height: 250)
} else {
Image(initialImageName)
.resizable()
.frame(width:UIScreen
.frame(width:250,height:250)

.bounds.width*(3/4), height:UIScreen.main.bounds.heightx(1/4))

}
}).actionSheet(isPresented: $showChooseCameraOrRollSheet) {
ActionSheet(title: Text("Select Photo"),
message: Text("Choose"),
buttons: [

.default(Text("Photo Library")) {
changeClassificationImage = true
openCameraRoll = true
sourceTypeChoice = .photoLibrary

I

.default(Text("Camera")) {
changeClassificationImage = true

openCameraRoll = true make sure cameropen

sourceTypeChoice = .camera
I
.cancel()
1)
}

Then I removed the camera page, and all references to it. Next, [implemented a button that allows the

image currently displayed on the skin classifier view to be saved to the user’s camera roll. I did this by
the following code.

Button("Save to camera roll") {

if changeClassificationImage == true {
imageSaver.writeToPhotoAlbum(image: imageSelectedFromCameraRoll)
} else {

imageSaver.writeToPhotoAlbum(image: UIImage(imageLiteralResourceName: initialImageName))

import Foundation
import UIKit

class ImageSaver: NSObject {
func writeToPhotoAlbum(image: UIImage) {
UIImageWriteToSavedPhotosAlbum(image, self, #selector(saveError), nil)

Qobjc func saveError(_ image: UIImage, didFinishSavingWithError error: Error?, contextInfo: UnsafeRawPointer) {
print("Save finished!")

I also had to make sure that the user enables access to the photo library, and I did that by including the
correct request in the information property list (with the appropriate message).

Key Type Value

+ Information Property List

Privacy - Photo Library Additions Usage Description

& The melanoma scanner requires access to the photo library in order to save images you take

Privacy - Camera Usage Description
Localization native development region

The melanoma scanner requires access to the camera to take photos of moles in app
$(DEVELOPMENT_LANGUAGE)

$(EXECUTABLE_NAME)

$(PRODUCT_BUNDLE_IDENTIFIER)

6.0

$(PRODUCT_NAME)

$(PRODUCT_BUNDLE_PACKAGE_TYPE)

Executable file
Bundle identifier
InfoDictionary version
Bundle name

Bundle OS Type code

Bundle version string (short) 1.0

Bundle version 1

Application requires iPhone environment YES
> Application Scene Manifest

Application supports indirect input events

YES
Launch Screen 0
Required device capabilities

Supported interface orientations

DOODOOODDOODOODOOQ

Supported interface orientations (iPad)

The app’s Ul now is shown below —

Skin Classifier Skin Classifier

elect Photo

Photo Library

Cancel

I had already implemented this ticket whilst working on the previous one, and so I just tested
everything worked by taking multiple photos and making sure that the classifier still worked. Testing
of this showed that everything functioned as intended.

To do this I started by drawing a circle on top of the camera view and making the circle transparent.
This allowed me to make the edges of the circle opaque, and so create an area on the screen in which
the mole should lie, to aid the user. The code and what the view looked like are shown below.

Rectangle()
.fill(Color.white.opacity(@.1))
.overlay(Circle().stroke(Color.blue, lineWidth: 4))
.frame(width: 125, height: 125)
.clipShape(Circle())

Cancel

Whilst testing this, I found a problem — which was that I was unable to click on the screen to focus
through the circle. This happened because the circle was treated as an object on top of the camera view,
so the tap was only registering on the circle, not on the camera view. Unfortunately, due to the way I
created the camera view (using a popup sheet), I could not use apple’s recommended method of setting
“allowHitTesting to false”, which would pass the tap through the object to the background. This didn’t
work as the tap would just go to the skin classifier view and press buttons such as classify or save
image instead.

Instead, what I had to do was create a function to draw just the edge of a circle (this is not inbuilt into
any apple library. The code for the circle edge creation is shown below.

import Foundation
import SwiftUI

//draws the edges of a circle for certain amount of angle (in degrees)
struct Arc: Shape {

var startAngle: Angle

var endAngle: Angle

var clockwise: Bool

func path(in rect: CGRect) -> Path {
var path = Path()
path.addArc(center: CGPoint(x: rect.midX, y: rect.midY), radius: rect.width / 2, startAngle: startAngle, endAngle: endAngle, clockwise:
clockwise)

return path

Then I added it to the sheet view including the camera using the following code. Here I had to ensure
that the circle didn’t pop up when the user wanted to open the photo library (as both the views use the
same infrastructure).

}.sheet(isPresented: $openCameraRoll, content: {
ZStack {

if sourceTypeChoice != .photoLibrary {
ImagePicker(selectedImage: $imageSelectedFromCameraRoll, sourceType: sourceTypeChoice)
Arc(startAngle: .degrees(®), endAngle: .degrees(360), clockwise: true)

.stroke(.blue, linewWidth: 3)
.frame(width: 125, height: 125)

} else {

ImagePicker(selectedImage: $imageSelectedFromCameraRoll, sourceType: sourceTypeChoice)
}
}

})

The final look of the camera view is shown below, now with the user being able to focus the camera by
clicking through the circle.

Cancel

In this sprint [implemented the camera feature for the app. Ticket 5 was added to this sprint as one of
the 5 people reviewing my sprint (by attempting to break the app) mentioned that it was not clear where
the mole should be when taking a picture. Furthermore, the same error as before occurred where if the
user exited the camera without taking a picture there would be no image where there should be one.
Fortunately, did this not cause any app crashing errors even when the user tried to classify the image
(the placeholder image was being used in this case). I also decided to reach out to Dr Lyman at this
point, who mentioned that he liked the direction the app was going in. He mentioned that no matter
how good the functionality of the app is, it needs to be user friendly and aesthetically pleasing if I want
users to actually use it properly rather than just to test it out.

This sprint has worked on the following points specified in the design section:
- [l.a.1] Skin Classifier
- [1l.a.7] Camera

8. Sprint 7 - Calendar

Yellow

O VII - Import apple calendars service

Green

O VIl - Enable notifications for app

Yellow

O VII - Integrate apple calendars
interface into app

Yellow

(O VIl - Allow users to set custom
reminders

Green

O VII - Send notifications via calendars
for events expressed in Design
document

To implement reminders, [decided to use the pre-built calendars and reminders service apple provides,
called “EventKit”. I imported it into the app, and created a new object called RemindersManager,
which would store all the methods required to deal with reminders.

There was very little documentation about this found online, and so I did not realise at first that
reminders and calendars required separate permission to be accessed. This caused me to run into errors
in which instead of creating a reminder the app would print the error shown below.

Defauli: calendar no:t created
Default calendar not created

All Output ¢ @ @ OO

To fix this I created a method inside my RemindersManager class to request access to the reminders
app on an iphone. As well as this I had to add information to the info.plist file describing what the user

should be shown when asked to provide access to a certain component of the phone. The code for the
request access method is shown below.

l func requestRemindersAccess() {

store.requestAccess(to: .reminder, completion:
{(granted: Bool, error: Error?) -> Void in
if granted {
//self.insertEvent(store: store)
print("Access granted")
} else {
print("Access denied")
}
1)

Then I created a button on the reminders page of the app that requests access from the user. The code,

and the UI for that code are shown below. Now the app, with the user’s permission, can make use of
apple’s reminders service.

Button("Ask for access to calendars") {
remindersManager.requestRemindersAccess()

Reminders

Reminders

“MelanomaScan" Would Like
to Access Your Reminders
The melanoma scanner requires
access to the reminders in order to
remind you to check for melanoma
regularly

After some research I found out that it is impossible (at the time of writing this) to add another 3/ party
app’s (even if it is apple) views into your apps views. Therefore, it is impossible for me to add the
calendars interface into my app. The best I could do is create a button that links to apple’s reminders

app, opening the reminders that the melanoma app has created. The code to create a link and open the
reminders app is shown below.

func openRemindersApp() {

if let url = URL(string: "x-apple-reminderkit://MelanomaScan"), UIApplication.shared.canOpenURL(url) {
UIApplication.shared.open(url, options: [:]) { (isDone) in

}

Button("Open Reminiders App") {
remindersManager.openRemindersApp()
}.padding()

Below is what the Ul looks like as the button to change view is pressed.
AR

<« Melanoma...

Reminders

First, I started off by creating a function that would create and save a reminder for a certain date and
time. Then I created a button to call that function from the reminders app. The code for this is shown
below, along with what happens when the button is pressed.

timeInterval: Double) {

return
}

print("working here")

print(calendar)

let newReminder = EKReminder(eventStore: store)
newReminder.calendar = calendar

newReminder.title = calendarTitle

newReminder.priority = Int(EKReminderPriority.high.rawvalue)
newReminder.notes = calendarNotes

let dueDate = Date

newReminder.dueDate onth, .day], from: dueDate)
do {
try self .save(newReminder, commit: true)
} catch let error {
")
}
}
Button("Create a remin
remindersMan eminder(calendarTitle: "TEST REMINDER", calendarNotes: "This is a test reminder”, timeInterval: Double(6@ * 60 * 24 x 3))

| }.padding()

The button shown above should now set a reminder called “TEST REMINDER” for 3 days after today.
Testing if this works as expected —

09:19

<« Melanoma..

Reminders

TEST REMINDER
1 21

e

At this point I decided to incorporate the request to access calendars into the “create a reminder”
button, so that the user does not have to go out of their way to provide access, instead access will be
requested anytime the user tries to create a reminder. This will improve usability and reduce the
likelihood of an error due to access to calendars not being granted.

Then I decided to allow the user to decide the frequency of reminders they wanted. I did this by letting
them choose from a variety of values using a picker.

eState
@state
let re

ome View {

vstack {

Picker(selection: $selectedTimeIntervalKey, label: Text("Reminder Interval")) {
ForEach(tervalDict ry.sorted(by: <), id: \.key) { key, val in
Text(key)
}
}

Button("Create a reminder") {

indersM: r.userCreateAnc NewReminder dar : "MelanomaScan Reminder", darNotes: "Reminder to check any moles on your skin that you are unsure about.",
tionaryl tedTimeIntervalkey] ?? -1)

As you can see above, | also changed the subroutine called when the user clicks the “Create a
reminder” button. I created a new subroutine that takes in the user’s input and manipulates it into the
format required by the EKEvent library. Then (shown in the code below), I called the method I created
earlier to create the reminder. I also had to change parts of the original create reminder function, as
previously I had not incorporated a way to cause a reminder to repeat.

/1 function

if self.accessGranted

// creates a reminder using the user's inputs.

func userCreateAndSaveNewReminder(calendarTitle: String, calendarNotes: String, timeInterval: Int) {

//deal with special case of
if timeInterval

-14

“once®

self.createAndSaveNewReminder(calendarTitle: calendarTitle, calendarNotes: calendarNotes, timeInterval: Double(6@ % 6@ * 24 % timeInterval), numWeeksPerRepeat: -1)
} else {

//convert from repeat (for how many days), to value for how many weeks

var numWeeksPerReminder:
nuniWeeksPerReminder =
Print "k)
print (numWeeksPerReminder)
PrANt (ki)

to create a new remi

false {

self.requestRemindersAccess()

} else {

guard let calendar =
return
print(*working here*)
print(calendar)
let newReminder =

newReminder . calendar
newReminder. title =

calendar
calendarTitle

self.createAndSaveNewReminder(calendarTitle: calendarTitle, calendarNotes: calendarNotes, timeInterval: Double(6@ * 68 * 24 * timeInterval),

der (pass in title, description an

Int = @
timeInterval/7

Repeat: i)

how long after t

y the reminder should be set for

func createAndSaveNewReminder(calendarTitle: String, calendarNotes: String, timeInterval: Double, nusWeeksPerRepeat: Int) {

self.store.defaultCalendarForNewReminders() else {
print(*Default calendar not created*)

EKReminder (eventStore: store)

.priority = Int(

newReminder.notes = calendarNotes

let duedate =

ity.high.rawvalue)

Date().addingTimeInterval (timeInterval)

newReminder . dueDateConponents = Calendar.current.dateComponents((.year, .sonth, .day), from: dueDate)

if numWeeksPerRepeat

-1 4

do {

try self.store.save(newReminder, commit: true)

print(*ss Reminder Saved #x*)
} cateh let error {
print(error)

)
) else {
let =
nil, setPositions: nil, end: nil)
inder.. el)
do ¢

: .weekly, interval: numWeeksPerRepeat, daysOfTheWeek: [EKRecurrenceDayOfWeek(.monday)], daysOfTheMonth: nil, monthsOfTheYear: nil, weeksOfTheYear: nil, daysOfTheYear:

try self.store.save(newReminder, commit: true)

print(*s* Reminder Saved x*)
} cateh let error {

print(error)
)

The code’s functionality is shown in the following screenshots. The screenshots show how in the
reminders app a ‘repeat’ value is added, causing the reminder to be repeated by the value specified by

the user.

Reminders Reminders Reminders

3. Every two weeks 3. Every two weeks 3. Every two weeks

19:03 o 19:03 3 19:03

< Melanoma... <« Melanoma.. <« Melanoma..

Details Custom

MelanomaScan Reminder

MelanomaScan Reminder
1 ry A

Frequency
Reminder to check any moles on your
skin that you are unsure about. Every

Sunday

Date
Monday

@ Time . Tuesday

Wednesday

< Repeat Custom Repeat Thursday

End Repeat Never Friday

Saturday
< Location .

. When Messaging .

The reminders created via the EKEvent library are directly linked to apple’s calendars and reminders
apps. Therefore, notifications can be set up (and have been set up in the previous tickets), but will be
sent through apple’s own apps. Due to the apps being apple’s own apps I can be sure that the
notifications will not be blocked/turned off.

In this sprint I allowed the app to access apple’s reminders feature and create repeating reminders for
the user to check their skin. At first, I attempted to implement my own reminders service but I found
that was too unreliable given the user can close the app and shut down their phone which pauses the
timer feature [was using. The 5 people I asked to test this feature also managed to cause the app to
crash by creating two reminders for the same time. This led me to using apple’s reminders feature to
create more reliable reminders (which did not cause any errors in post sprint testing).

This sprint has worked on the following points specified in the design section:
- [l.a.6] Reminders

9. Sprint 8 — Environment Risks

Green

O VIII - Import UV light api

Yellow

O VIII - Decode message from UV API,
and test basic request

Green

(O VIl - Import apple GPS service

Red

O VIII - Retrive gps location info

Yellow

(O Vil - Retreive LV light info for
location

Green

(O VIl - Import air pollution levels api

Yellow

(O VIl - Decode message from pollution
API, and test basic request

Yellow

O VIII - Retrieve air pollution level for
location

I decided to use the openUV api (https: //www.openuv.io), as it was an api that allowed me to access
UV index levels for anywhere in the world, at any given time. The api required me to create an
authorisation key (by signing up to their service. Unfortunately, their free service is limited to 50
requests per day, but that was more than sufficient for the development of my app.

I set up everything for the UV light api requests by creating a new file called UVIndexManager. This
file will contain everything from requesting and decoding the JSON, to carrying out algorithmic tasks
with the data from the openUYV api.

https://www.openuv.io/

I started off by creating the data structures that would hold data from the returned JSON. The JSON
request format is shown below, and the data structures I created to hold the data I wanted from the

request are shown below as well.

{
- result: {
uv: 0,
uv_time: "2021-12-04T11:58:40.741z2",
uv_max: 12.6724,
uv_max_time: "2021-12-04T04:08:54.537z2",
ozone: 291.2,
ozone_time: "2021-12-04T09:04:14.502z",
- safe_exposure_time: {
stl: null,
st2: null,
st3: null,
st4: null,
st5: null,
st6: null
}
- sun_info: {
- sun_times: {
solarNoon: "2021-12-04T04:08:54.537z",
nadir: "2021-12-03T16:08:54.5372",
sunrise: "2021-12-03T21:06:41.8202",
sunset: "2021-12-04T11:11:07.254z",
sunriseEnd: "2021-12-03T21:09:29.652z",
sunsetStart: "2021-12-04T11:08:19.422z",
dawn: "2021-12-03T20:39:03.6562",
dusk: "2021-12-04T11:38:45.418z",
nauticalDawn: "2021-12-03T20:05:27.702z2",
nauticalDusk: "2021-12-04T12:12:21.372z2",
nightEnd: "2021-12-03T19:29:26.888zZ",
night: "2021-12-04T12:48:22.1862",
goldenHourEnd: "2021-12-03T21:41:56.807z",
goldenHour: "2021-12-04T10:35:52.2672"
}
- sun_position: {
azimuth: 0.9819919359817836,
altitude: -0.16995471961916217
}
}
}
}

struct Root_Layer@: Codable {
var result: Result_Layerl
}

struct Result_Layerl: Codable {
var uv: Double
Double
Double

var uv_max:
var ozone:
}

// May also add sunrise and sunset times soon

The structs shown above only specify the data [wanted from the request, and the rest is discarded.

In the file that includes the data structures of the decoded json I added a class called UVIndexManager,
which will include all subroutines that carry out algorithms on the data requested from the openUV api.

I first created a method called test request which sends out a set request to the openUV api and stores
the results in the structs I defined earlier. Then it returns the values in the structs so that I can use them
and display them for the user. Below is the method that sends a fixed request to test everything is
working as intended.

func testRequest(callback: Qescaping (Double, Double, Double) -> ()) {
//defining what the request is
let request = NSMutableURLRequest(url: NSURL(string:
"https://api.openuv.io/api/vl/uv?lat=-33.34&1ng=115.342&dt=2018-01-24T10%3A50%3A52.2832")! as URL, cachePolicy: .useProtocolCachePolicy
timeoutInterval: 10.0)

request.httpMethod = "GET"
request.allHTTPHeaderFields = headers

let session = URLSession.shared
let dataTask = session.dataTask(with: request as URLRequest, completionHandler: { (data: Data?, response: URLResponse?, error: Error?) ->

Void in
//checking if response actually contains data
guard let data = data, error == nil else {

if let printError = error {
print(printError)
} else {
print(“"error in printError")
}
return
}

var result: Root_Layer®?
//decoding the JSON returned
do {
let decoder = JSONDecoder()
decoder.dateDecodingStrategy = .is08601
result = try decoder.decode(Root_Layer@.self, from: data)

}
catch {
print("-——— ERROR-———— ")
print(error)
print("-——— ERROR————— ")
}
guard let json = result else{
return
}

//returning the decoded values stored in structs.
DispatchQueue.main.async {

callback(json.result.uv, json.result.uv_max, json.result.ozone)
}

3

dataTask.resume()

I called this method from the U, and printed the values returned.

Button("Test Request") {
uvIndexManager.testRequest(callback: {(uvResponse: Double, uvMaxResponse: Double, ozoneResponse: Double) -> () in

print("UV Index: " + String(uvResponse))
print("Max UV Index: " + String(uvMaxResponse))
print("Ozone levels: " + String(ozoneResponse))

)

This code prints the following data, showing that the fixed request is working correctly.

UV Index: 0.1234
Max UV Index: 11.9421
Ozone levels: 293.4

I also made a separate request earlier, using an earlier iteration of the fixed request method (shown
below). This method printed the http response (also shown below), which made it clear that the api
requests were working exactly as intended.

class UVIndexManager {
sing the openUV api

let headers = [
“x-access-token": “5dc7e2ddel6e30b5ade87bcofe9577cd"
]

function to do a test request from tt

func testRequest() {

let request = NSMutableURLRequest(url: NSURL(string: "https://api.openuv.io/api/v1/uv?lat=-33.34&1ng=115.342&dt=2018-01-24T10%3A50%3A52.2832")!
as URL, cachePolicy: .useProtocolCachePolicy, timeoutInterval: 10.0)

request.httpMethod = “GET
request.allHTTPHeaderFields = headers

let session = URLSession.shared
let dataTask = session.dataTask(with: request as URLRequest, completionHandler: { (data, response, error) -> Void in
if (error != nil) {
if let printError = error {
print(printError)
} else {
print("error in printError")
}
print(error
} else {
let httpResponse = response as? HTTPURLResponse
if let printResponse = httpResponse {
print(printResponse)
} else {
print("error in httpResponse”)
}
print(httpResponse)
}
3

dataTask.resume()

<NSHTTPURLResponse: ©x283aa6960> { URL:
https://api.openuv.io/api/v1l/uv?lat=-33.34&1ng=115
.3428dt=2018-01-24T10%3A50%3A52.283Z } { Status Code: 200, Headers {
"Access-Control-Allow-Origin" = (
nyen
)i
Connection = (
"keep-alive"
)i
“"Content-Length" = (
902
)i
"Content-Type" = (
"application/json; charset=utf-8"
)i
Date = (
"Sat, 04 Dec 2021 12:13:24 GMT"
)i
Etag = (
"W/\"386-z9aDIqnH/BAUXnh+0X76gsk10i8\""
)i
Server = (
Cowboy
)i
via = (
"1.1 vegur"
)i
"X-Powered-By" = (
Express
)i
"X-Ratelimit-Limit" = (
50
)i
"X-Ratelimit-Remaining" = (
48
)i
}}

To send the correct longitude and latitude for the api request, I had to get the user’s co-ordinates.
Apple’s iPhones have inbuilt gps software and hardware, so I decided to make use of that. After some
research I found that the apple’s CoreLocation library was the best for me to use.

I created a new file called “LocationManager” to deal with all the location requests and related
algorithms. I set it up using the code shown below, initialising everything required by the
CoreLocation library. I made the class inside the file an observable object, so that any updates in values
there would also cause text in the Ul to be updated. Furthermore, I had to make it into a
CLLocationManagerDelegate as required by Core Location.

import Foundation
import Corelocation
import Combine

//setting up everything required from CorelLocation library

//set up as published, so functions do not need to return values
private let locationManager = CLLocationManager()

@Published var locationStatus: CLAuthorizationStatus?

@Published var lastlLocation: CLLocation?

//required setting up of CorelLocation instance
override init() {
super.init()

23 locationManager.delegate = self
locationManager.desiredAccuracy = kCLLocationAccuracyBest
locationManager.requestWhenInUseAuthorization()
locationManager.startUpdatingLocation()

class LocationManager: NSObject, ObservableObject, CLLocationManagerDelegate {

I also had to add a description of why the location was being used in the info.plist file.

+ Information Property List

(20 items)

Privacy - Location When In Use Usage Description ¢ © @

The melanoma scanner requires access to the phone's location to let you know about the environmental risks.

Privacy - Calendars Usage Description
Privacy - Reminders Usage Description

[EX3)

The melanoma scanner requires access to the calendars in order to remind you to check for melanoma regularly
The melanoma scanner requires access to the reminders in order to remind you to check for melanoma regularly

To retrieve the user’s location, I had to first ensure that [was authorized, and so also wanted to let the
user know if they had enabled location access. Then I created functions to constantly update the user’s
displayed location. The code for this is shown below.

}

}

//checks whether user has allowed access to the location services
//if the user has not given acess, returns what access given
var statusString: String {

guard let status = locationStatus else {
return "unknown"
}
switch status {
case .notDetermined: return "notDetermined"
case .authorizedwhenInUse: return "authorizedwhenInUse"
case .authorizedAlways: return "authorizedAlways"
case .restricted: return "restricted"
case .denied: return "denied"
default: return "unknown"
}

//updating the location status
func locationManager(_ manager: CLLocationManager, didChangeAuthorization status:

locationStatus = status
//print(#function, statusString)

//updating the current location
func locationManager(_ manager: CLLocationManager, didUpdatelLocations locations: [CLLocation]) {

guard let location = locations.last else { return }
lastLocation = location
//print(#function, location)

CLAuthorizationStatus) {

I also decided to add a small map showing the user’s current location to the view. This will make the
location more tangible and obvious to the user, making it clearer what the information being presented
in the view is for. It will also allow the user to know exactly for what area the UV/pollution risk is

high/low for.

I implemented the map using apple’s Map Kit, and made the map constantly centred around the user. I
also added text in the view to show the user’s longitude and latitude, as well as access to location data
status (for development purposes). The code for these Ul features are shown below.

import SwiftUI
import MapKit

struct WeatherRisks: View {
let uvIndexManager = UVIndexManager()
@StateObject var locationManager = LocationManager()

//settir e user's co-ordinates

var userlLatitude: String {
return "\(locationManager.lastLocation?.coordinate.latitude 2?? @)"

}
var userLongitude: String {
return "\(locationManager.lastLocation?.coordinate.longitude ?? @)"

//using apple's Mapkit to create an initial region, completely random
@State private var region = MKCoordinateRegion(center: CLLocationCoordinate2D(latitude: 1, longitude: 1), span
MKCoordinateSpan(latitudeDelta: ©.5, longitudeDelta: ©.5))

var body: some View {
VStack {

Map(coordinateRegion: $region, showsUserLocation: true, userTrackingMode: .constant(.follow))

.frame(width: 400, height: 300)
Spacer()
VStack {
Text("location status: \(locationManager.statusString)")
Text("latitude: \(userLatitude)")

Text("longitude: \(userLongitude)")

Button("Test Request") {
uvIndexManager.testRequest(callback: {(uvResponse: Double, uvMaxResponse: Double, ozoneResponse: Double) -> () in

print("UV Index: " + String(uvResponse))
print("Max UV Index: " + String(uvMaxResponse))
print("Ozone levels: " + String(ozoneResponse))

Weather Risks

Risborough® .Chesham ()

Watford

oSlaugh

Allow “MelanomaScan” to
use your location?

The melanoma scanner requires
access to the phone's location to let
you know about the environmental
risks

JReading

@B _sracknel

«Woking

location status: authorizedWheninUse
latitude: 51.49113610920671
longitude: -0.6092419823312369

location status: authorizedWheninUse
latitude: 51.49125126754428
longitude: -0.6089243975398568

In order to retrieve UV light information for the user’s location I started off by converting the api
request function into a function that works with passed in values for the user’s co-ordinates. I did this
by replacing (with string interpolation) the longitude and latitude values in the URL with values given
by the user’s GPS co-ordinates. The code for the final api request function is shown below.

//requests UV info for given location and current time. Works Async.
func requestUVInfoForLocation(inputLatitude: Double, inputlLongitude: Double, callback: @escaping (Double, Double, Double) -> ()) {

//URL for request
let request = NSMutableURLRequest(url: NSURL(string: "https://api.openuv.io/api/vil/uv?lat=" + String(inputLatitude) + "&lng=" +
String(inputLongitude))! as URL, cachePolicy: .useProtocolCachePolicy, timeoutInterval: 10.0)

request.httpMethod = "GET"
request.allHTTPHeaderFields = headers

let session = URLSession.shared
let dataTask = session.dataTask(with: request as URLRequest, completionHandler: { (data: Data?, response: URLResponse?, error: Error?) ->

Void in
//checking if response actually contains data
guard let data = data, error == nil else {
if let printError = error {
print(printError)
} else {
print("error in printError")
}
return

}

var result: Root_Layer@?
//decoding the JSON returned
do {
let decoder = JSONDecoder()
decoder.dateDecodingStrategy = .is08601
result = try decoder.decode(Root_Layer@.self, from: data)

}
catch {
print("-——— ERROR————— ")
print(error)
print("-—-—- ERROR-—--— ")
}
guard let json = result else{
return
}

//returning the decoded values stored in structs, works async.
DispatchQueue.main.async {

callback(json.result.uv, json.result.uv_max, json.result.ozone)
}

i3}

dataTask.resume()

To make the app easier to use, I made the api request happen anytime the user opens the weather risks.
This was done using “onAppear”, as shown in the code below.

.onAppear(perform: {
uvIndexManager.requestUVInfoForLocation(inputLatitude: Double(userLatitude) ?? @, inputLongitude: Double(userLongitude) ?? @,callback: {(uvResponse
Double, uvMaxResponse: Double, ozoneResponse: Double) -> () in
uvIndexDisplay = String(uvResponse)
uvMaxIndexDisplay = String(uvMaxResponse)
ozonelevelDisplay = String(ozoneResponse)
b
b

As the api request happens asynchronously, I let the user know when the data had not yet been fetched
by setting the initial text to “not fetched yet”. And then I displayed the information (currently for
development purposes), as in the code below.

@State var uvIndexDisplay = "not fetched yet."
@State var uvMaxIndexDisplay = "not fetched yet."
@State var ozonelLevelDisplay = "not fetched yet."

var body: some View {
VStack {

Map(coordinateRegion: $region, showsUserLocation: true, userTrackingMode: .constant(.follow))
' .frame(width: 350, height: 300)

Spacer()
VStack {

VStack {
Text("location status: \(locationManager.statusString)")
Text("latitude: \(userLatitude)")
Text("longitude: \(userLongitude)")

}.padding()

Vstack {
Text("UV Index: " + uvIndexDisplay)
Text("Max UV Index: " + uvMaxIndexDisplay)
Text("Ozone Level: " + ozonelLevelDisplay)
}.padding()

After this ticket the weather risks page looks like the screenshots below.

Weather Risks Weather Risks

location status: authorizedWheninUse location status: authorizedWheninUse
latitude: 51.491004985349846 latitude: 51.49114340942216
longitude: -0.6092200635219632 longitude: -0.609237954132633

UV Index: not fetched yet. UV Index: 9.2676
Max UV Index: not fetched yet. Max UV Index: 11.7595
Ozone Level: not fetched yet. Ozone Level: 268.0

I used the same method as the UV light api to implement the air pollution api. I first found an api that
returned sufficient useful data for free. The IQAir AirVisual api did exactly what I needed from the air
pollution api, and so I decided to use it (https: //www.igair.com/commercial/air-quality-
monitors/airvisual-platformv/api).

I added a file called AQIManager, inside which I created a AQIManager class (which I will use to do
anything AQI related. Then I modified the UV light api request code so that it worked with the IQAir
api, the code for this is shown below.

https://www.iqair.com/commercial/air-quality-monitors/airvisual-platform/api
https://www.iqair.com/commercial/air-quality-monitors/airvisual-platform/api

class AQIManager {
let accessKey = "990d95b6-cdee-43cé6-b66f-73ceee50d2da”

//function to do a test request from the openUV api
func testRequest(callback: @escaping (String, Int) -> ()) {
//defining what the request is
let request = NSMutableURLRequest(url: NSURL(string: "http://api.airvisual.com/v2/nearest_city?lat=51.5072&1lon=0.1276&key=\(accessKey)")! as
URL, cachePolicy: .useProtocolCachePolicy, timeoutInterval: 10.0)

request.httpMethod = "GET"
//request.allHTTPHeaderFields = headers

let session = URLSession.shared
let dataTask = session.dataTask(with: request as URLRequest, completionHandler: { (data: Data?, response: URLResponse?, error: Error?) ->

Void in
//checking if response actually contains data
guard let data = data, error == nil else {

if let printError = error {
print(printError)
} else {
print("error in printError")
}
return
}

var result: AQI_Root_Layer@?
//decoding the JSON returned
do {
let decoder = JSONDecoder()
decoder.dateDecodingStrategy = .is08601
result = try decoder.decode(AQI_Root_Layer@.self, from: data)

}
catch {
59 print("-----ERROR-----)|

print(error)
print("-———- ERROR-———— ")

}

guard let json = result else{
return

}

//returning the decoded values stored in structs
DispatchQueue.main.async {
callback(json.data.city, json.data.current.pollution.aqius)
}
1
dataTask.resume()

I also had to take a look at an example response from the api so that I could structure the way I store the
json requests I receive. The parts of the response that would be helpful for creating the data structure or
would be helpful to use are shown below (the whole response is very long as it contains historic data, as
well as data for forecasts).

{

"status": "success",
"data": {
"name": "Eilat Harbor",

"city": "Eilat",
"state": "South District",
"country": "Israel",
"location": {
"type": "Point",
"coordinates": [
34.939443,
29.531814
]
h
"forecasts": [//object containing forecast information
{
"ts": "2017-02-01T03:00:00.000Z", //timestamp
"aqius": 21, //AQI value based on US EPA standard
"aqicn": 7, //AQI value based on China MEP standard
"tp": 8, //temperature in Celsius
"tp_min": 6, //minimum temperature in Celsius
"pr*': 976, //atmospheric pressure in hPa
"hu": 100, //humidity %
"ws": 3, //wind speed (m/s)
"wd": 313, //wind direction, as an angle of 360° (N=0, E=90, S=180, W=270)
"ic": "10n" //weather icon code, see below for icon index
}
// contains more forecast data for upcoming 76 hours
]
"current": {
"weather": {
"ts'": "2017-02-01T01:00:00.0002",

"tp": 12,
“pr': 1020,
"hu": 62,
"ws'": 2,
"wd": 320,
"ic": "o1n"

h
"pollution": {
"ts": "2017-02-01T01:15:00.000Z",

"aqius": 18,
"mainus": "pl1", //main pollutant for US AQI
"agicn": 20,

"maincn": "p1", //main pollutant for Chinese AQI
"plt: { //pollutant details, concentration and appropriate AQIs

"conc": 20,
"aqius": 18,
"aqicn": 20
}
b
h
"history": { //object containing weather and pollution history information
"weather": [
{
"ts": "2017-02-01T01:00:00.000Z",
PR
"pr*': 1020,
"hu": 62,
"ws'": 2,
"wd": 320,
Yic": "01n"

Using this information about an example response I created the data structure I will use to store the
response. This structure will allow me to return what city the AQI is measured for (as air pollution
measuring stations only exist in certain cities), as well as what the AQI of the city is. [am using the US
AQI because that is used much more widely in the UK than the Chinese AQL.

struct AQI_Root_Layer@: Codable {
var data: AQI_Result_Layerl
}

struct AQI_Result_Layerl: Codable {
var city: String
var current: AQI_Result_Layer2
}

struct AQI_Result_Layer2: Codable {
var pollution: AQI_Result_Layer3
}

struct AQI_Result_Layer3: Codable {
var agius: Int

b

Then I created a button in the weather risks app to make a request for the co-ordinates 50.507, 0.1276
(which are the co-ordinates for London). At first the api request did not work, and I got the following
error —

"The resource could not be loaded because the App Transport Security policy requires
the use of a secure connection"

This meant [needed to add some extra details about the nature of the api request in the info.plist file.
The information I had to add is shown below, as I could not do this using the interface in xcode, I had
to open the raw info.plist file and add exceptions that allowed me to make this specific api request.

>NSAppTransportSecurity</

>

>NSAllowsArbitrarylLoads</
/>
>NSExceptionDomains</

>

A A A

JA)

>NSIncludesSubdomains</
/>
>NSThirdPartyExceptionRequiresForwardSecrecy</
/>

The user interface after implementing the button and making sure the api request works is shown
below. The location of the city is also shown to verify that the api request is indeed being made to the
correct location (closest high accuracy UV light measuring station).

Knebworth SIorora;
09:447 602 = @
o
o belvedere X
a,
Weather Risks Weather Risks e A8 o
athiel
7
m Ct
Cheshunt Epping 4
1o0d Enfield Loughton
10]
‘are
v 06 |
=3 Romford
[41] 112] liford
Barking ‘Dagenham
London - 58 ' [13]
GREENWICH
. [1102]
AQI not fetched yet. Current AQI: 25, Current city: Belvedere e
[1214] Dartfc
location status: authorizedWheninUse location status: authorizedWheninUse o e
latitude: 51.49065860733597 latitude: 51.49065860733597 Mitcham Bromley <
longitude: -0.6128645857774725 longitude: -0.6128645857774725 < |
) Croydon fhosa) Orpington
Sutton
UV Index: 7.3434 UV Index: 7.3434 m Q |
Max UV Index: 11.7618 Max UV Index: 11.7618 & B ol LIVE y
Ozone Level: 268.0 Ozone Level: 268.0 (23] s
Belvedere

Friday, 09:44 GMT

Next, I decided to make the api request work for the user’s correct location. I did this by first updating
the function in the AQIManager class so that it takes in a set of co-ordinates and returns the AQI for
that location. This only needed me to update the url for the request and is shown below.

passed in

//same function but for the specific co-ordinates

func requestAQIInfoForLocation(inputlLatitude: Double, inputLongitude: Double, callback: @escaping (String, Int) -> ()) {

//defining what the request is
let request = NSMutableURLRequest(url: NSURL(string: "http://api.airvisual.com/v2/nearest_city?lat=" + String(inputLatitude) +
"&lon=" + String(inputLongitude) + "&key=" + String(accessKey))! as URL, cachePolicy: .useProtocolCachePolicy

timeoutInterval: 10.0)

Then I updated the button so that it passed in the user’s current location when making the request.

Text(AQIDataCheck)

Button("Test Air pol") {
agiManager.requestAQIInfoForLocation(inputLatitude: Double(userLatitude) ?? @, inputLongitude: Double(userLongitude) 2?? @,

I callback: {(cityResponse: String, aqiResponse: Int) -> () in

AQIDataCheck = "Current AQI: " + String(agiResponse) + ", Current city: " + String(cityResponse)

)

The screenshot below shows how the city now changes to my current location, indicating that the api
request is working accurately.

Weather Risks

Current AQ!l: 21, Current city: Eton

location status: authorizedWheninUse
latitude: 51.49097573268928
longitude: -0.609112697220923

UV Index: 0.3193
Max UV Index: 11.7618
Ozone Level: 268.0

To make using the app a better experience for the user I made all of the api requests now run as soon as
the user opens the reminders page, rather than the user having to press a button to get the information. |
did this by using the onAppear functionality of views in xcode, shown below.

.navigationBarTitle("Weather Risks")

.onAppear(perform: {
I uvIndexManager.requestUVInfoForLocation(inputLatitude: Double(userLatitude) ?? @, inputLongitude: Double(userLongitude) ?? @

,callback: {(uvResponse: Double, uvMaxResponse: Double, ozoneResponse: Double) —> () in

uvIndexDisplay = String(uvResponse)

uvMaxIndexDisplay = String(uvMaxResponse)

ozonelevelDisplay = String(ozoneResponse)
1)

agiManager.requestAQIInfoForLocation(inputLatitude: Double(userLatitude) ?? @, inputlLongitude: Double(userLongitude) ?? 0,
callback: {(cityResponse: String, aqiResponse: Int) -> () in
AQICity = String(cityResponse)
AQIData = String(agiResponse)

1)

3
The final look of the UI now is shown below. I also realised a minor error in my previous testing whilst

implementing this final bit of code. Previously whilst testing, I was using an emulated location in
xcode, rather than the location from the phone used for testing. This caused me to get the AQI data for

London, whilst displaying the city in which my phone is. I fixed this by disconnecting the phone whilst
testing the location feature.

Weather Risks

€ Map§acontane A

location status: authorizedWheninUse
latitude: 51.49089223652213
longitude: -0.6091930822140876

City: Windsor
Current AQI: 3

UV Index: 0.2266
Max UV Index: 11.7618
Ozone Level: 268.0

In this sprint [implemented apis to allow the user to see their UV light and pollution risks in their area.
A few small problems were found when testing this feature post-sprint. Firstly, the map would
sometimes not center on the user after the user tries to move the map. After some research I found that
this was a bug with MapKit that [unfortunately cannot fix at the moment. As well as this, the apis often
would time-out and not return anything when the user was using mobile data. [attempted to fix this by
returning a message to the user to get a better signal when using mobile data to check the weather risks.

This sprint has worked on the following points specified in the design section:
- [1.a.8] UV light risk and pollution risk in area

10. Sprint 9 — Aesthetics and Final Testing

These tickets are mostly for the user’s quality of life. Almost all the functional aspect of the app is now
finished, and I will spend the time I have remaining making the app more usable.

Yellow

(O IX - Make Weather Risks page user
friendly

Yellow

(O IX - Make the Dashboard page more
user friendly

Yellow

(O IX - Make Skin Classifier page more
user friendly

Yellow

(O IX - Make Risk Factors page more user
friendly

I wanted to make the app more visually pleasing, and so easier for the user to use. Therefore, I decided
to make a colour-based visual that can aid users in judging whether the air quality level and the
ultraviolet light level is good or bad. To stay consistent with the rest of the world’s standards I used the
following rules for my visual aspects —

UV Level Name UV Level Short Name UV Range UV Colour

Low Low [0-3) [| #558B2F
Moderate Mod [3-6) [#F9A825
High High [6-8) B #EF6C00
Very High VHigh [8-11) [| #B71C1C
Extreme Extr [11+...) [| #6A1B9A

(https: //www.openuv.io/uvindex)

Daily AQI Values of

Color Levels of Concern Index Description of Air Quality

Yellow Moderate 51 to 100 Air quality is acceptable. However, there may be a risk for some people, particularly those who
are unusually sensitive to air pollution.

Orange Unhealthy for Members of sensitive groups may experience health effects. The general public is less likely to be
Sensitive Groups affected.
Unhealthy Some members of the general public may experience health effects; members of sensitive groups
may experience more serious health effects.

m Very Unhealthy Health alert: The risk of health effects is increased for everyone.
300

Maroon Hazardous 301 and | Health warning of emergency conditions: everyone likely to be affected.
higher

(https: //www.alrnow.gov/agl/aqi-basics/)

Then I started off by removing all unnecessary parts of the user interface. I removed the longitude and
latitude displayed (as that was useless to the user and was only needed for development).

For the visual display, I decided to use different coloured rounded rectangles. Depending on the air
pollution or uv light levels a different rectangle would be more opaque than others. In order to
implement this, I created a new file that would contain functions to return different views depending on
the values passed in. The function for the UV rectangles is shown below.

https://www.openuv.io/uvindex
https://www.airnow.gov/aqi/aqi-basics/

class WeatherRisksViewModel {
//source - https://www.openuv.io/uvindex

@viewBuilder func getUVColourCodedRectangles(uv: Double) -> some View {

if uv == -1 {
Hstack {
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color.green)
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color.yellow)

RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color.orange)
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color.red)
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color.purple)
}.frame(width: UIScreen.screenWidth - 20, height: 20)

} else if uv < 3 {

HStack {
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color.green)
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color.yellow)
.opacity(@.5)
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color.orange)
.opacity(0.5)
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color.red)
.opacity(@.5)
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color.purple)
.opacity(@.5)
}.frame(width: UIScreen.screenWidth - 2@, height: 20)

} else if uv < 6 {

Hstack {
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color.green)
.opacity(0.5)
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color.yellow)
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color.orange)
.opacity(@.5)
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color.red)
.opacity(0.5)
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color.purple)
.opacity(0.5)
}.frame(width: UIScreen.screenWidth - 2@, height: 20)

} else if uv < 8 {

HStack {

(Around 350 lines of if statements)

I then implemented this for the UV light as well (in a similar method). I also happened to make an
extension during this, as [wanted to make an easy way to get the screen height and width. This would
help me to make a user interface that would work on any device, regardless of how big the screen is.
The extension’s code is shown below.

import Foundation
import SwiftUI

//extension to get screen width and height for whatever device

extension UIScreen{
static let screenWidth = UIScreen.main.bounds.size.width
static let screenHeight = UIScreen.main.bounds.size.height
static let screenSize = UIScreen.main.bounds.size

The UI at this stage is shown below. On the left side you can see what the UI looks like for data for my
actual location, on the right I have used set AQI and UV values to demonstrate what would be shown if
the levels of pollution/uv light were higher (and also for testing purposes).

Weather Risks

City: Windsor
Current AQl: 3

Current UV Index: 0.0
Daily Max UV Index: 11.7618

Weather Risks

City: Windsor
Current AQI: 3
L

—_—

Current UV Index: 0.0
Daily Max UV Index: 11.7618

At this point I realised that the “Daily Max UV Index” value would make no sense unless the user was
given more data. Therefore, | added an additional part to my UV light api request, now also storing the
“solarNoon” value (when the sun is at the peak during the day). This would provide information about
when the max UV Index occurs. I did this by first expanding the data structure I used to store
information from the json response to what is shown below.

struct UV_Root_Layer@: Codable {
var result: UV_Result_Layerl
}

struct UV_Result_Layerl: Codable {
var uv: Double
var uv_max: Double
var ozone: Double
var sun_info: UV_Result_Layer2

}

struct UV_Result_Layer2: Codable {
var sun_times: UV_Result_Layer3

}

struct UV_Result_Layer3: Codable {
var solarNoon: String

}

Furthermore, I made the api request function return the solarNoon value as well. Unfortunately,
openUV claims that it returns the date in the is06801 format, but in reality, it uses a custom format. This
caused quite a few errors as [was attempting to decode the json using Apple’s built in is06801 date
formatter. I had to create my own custom is06801 converter, which is shown below.

10 class DateFormattingModel {

12 // let inputDate = "2020-08-22T18:55:36Z"

// let dateFormatter = DateFormatter()
w1/ dateFormatter.dateFormat = "yyyy-MM—dd'T'HH:mm:ssZ"
5 // let date = dateFormatter.date(from: inputDate) ?? Date()

func convertFromIS06801ToDate(inputISODate: String) -> Date {

19 //2021-12-11T04:11:52.613Z example input

21 var newTimeString = ""

22 var startAdding = true

24 //this produces a string until the input stops obeying is06801 format
25 for ¢ in inputISODate {

27 if c == "." {

28 startAdding = false

29 3}

31 if startAdding == true {
32 newTimeString.append(c)

33 }

35 }

37 //adding the end character
38 newTimeString.append("Z")

40 //formatting the date

Al let inputDate2 = newTimeString.replacingOccurrences(of: "T", with: " ")
42 let dateFormatter = DateFormatter()

dateFormatter.dateFormat = "yyyy-MM-dd HH:mm:ssZ"

iy let date = dateFormatter.date(from: inputDate2) ?? Date()

ws [/ print(date)

w6 // print(newTimeString)
48 return date

49 }

50

1}

I used this to deformat the input iso6801-like date and display it (as shown in the code below).

111 HStack {

12 Text("Solar Noon (24hr format):")

113 .font(.titled)

14 .bold()

115 //Text(solarNoonDisplay, style: .time)

16 Text(dateFormattingModel.convertFromIS06801ToDate (inputISODate: solarNoonDisplay), style: .time)
1 .font(.title3)

1 .opacity(0.8)

118

9 }

I also restructured a lot of the displayed items in the view so that they were more readable and stress
was made on certain aspects of the view to make it more usable. The change in some of the code is
shown below, most of the items in the view followed a similar structure.

VStack(alignment: .leading) {

HStack {
Text("City:")
.font(.title3)
.bold()
Text("\(AQICity)")
.font(.title3)
.opacity(0.8)

}
HStack {
Text("Current AQI:")
.font(.title3)
.bold()
Text("\(AQIData)")
.font(.title3)
.opacity(0.8)
}

}.padding()
weatherRisksViewModel.getAQIColourCodedRectangles(agi: Double(AQIData) ?? -1)

//uncommment to test for different AQI values
//weatherRisksViewModel.getAQIColourCodedRectangles(aqi: 260

VStack(alignment: .leading) {
HStack {

Text("Current UV Index:")
.font(.title3)
.bold()

Text("\(uvIndexDisplay)")
.font(.title3)
.opacity(0.8)

}
HStack {
Text("Daily Max UV Index:")
.font(.title3)
.bold()
Text("\(uvMaxIndexDisplay)")
.font(.title3)
.opacity(0.8)
}

}.padding()

weatherRisksViewModel.getUVColourCodedRectangles(uv: Double(uvIndexDisplay) ?? -1)

The final user interface is shown below, both in Apple’s light and dark mode.

WEETGE A NE S

City: Eton
Current AQI: 21

Current UV Index: 0.0
Daily Max UV Index: 11.7618

Daily Max UV Index: 11.7618
Solar Noon (24hr format): 11

22:251 o D

< Back
Weather Risks
)
()
€Map$ Leaal
City: Eton
Current AQI: 21
[-

Current UV Index: 0.0
Daily Max UV Index: 11.7618

Daily Max UV Index: 11.7618 (D
Solar Noon (24hr format): 11:54

I started off by creating a colour set for my app, as the generic black and white did not look great as the
colour scheme for the app. I created colour elements in the assets.xcassets file in xcode. In that file, |
created two colours — one for the light mode version of the app, and another for the dark mode version
of the app.

Background Name Background

Devices ¥ Universal

iPhone

iPad

Mac Scaled

CarPlay

Apple Watch
Universal Apple TV

Mac

Any Appearance

Appearances Any, Dark
High Contrast

Gamut | Any

Localization
Localize...

Color

Content | SRGB
Input Method | 8-bit (0-255)

Red E
Green

Blue

A
v
v

Opacity 100.0%

Show Color Panel

I'used these custom light/dark mode colours by create a vertical stack of elements in each of my views,
with the background being an infinite rectangle of the custom colour. The code for this is shown below.

ZStack {
Rectangle()
.fill(Color("Background"))
.frame(maxWidth: .infinity, maxHeight: .infinity)
.edgesIgnoringSafeArea(.all)

Then I started to work on creating buttons that would be visually pleasing, and easier to use than
clicking on some text. I settled on creating minimalistic rounded rectangle buttons with slight shadows
behind them. I created a “ButtonStyle” to achieve this, and the detailed methods I used to create these
buttons are shown below.

}

struct NeumorphicButtonStyle: ButtonStyle {

var color: Color

//creates a button that has slight shadows and looks nice
func makeBody(configuration: Self.Configuration) -> some View {
configuration.label

//.frame(width: UIScreer enWidt C
.frame(width: UIScreen.screenWidth/3, height: UIScreen.screenHeight/50)
.padding(.horizontal, (UIScreen.screenWidth/4))
.padding(.vertical, (UIScreen.screenHeight/40))

/ .padding(10)

.background(Color("Background"))

.cornerRadius(20)

.shadow(color: Color("DarkShadow"), radius: 20, x: 8, y: 8)
.shadow(color: Color("LightShadow"), radius: 20, x: -8, y: -8)
.scaleEffect(configuration.isPressed ? 0.9 : 1.0)

Button("Test Butto
}.fram

nWidth 40, en.screenHeight/15)

eumorphicButtonStyle(color: Color("Background"))

Having made aesthetically pleasing buttons, the dashboard still lacked anything unique that made it a
nice view. Therefore, I decided to add a gif to the view, which would act as the button leading to the
melanoma scanner (the main part of the app, which is why it should get extra attention). The gif I
decided to use was of a 3d representation of spherically orbiting particles, which seemed to fit the app’s
usage of Al. Below I have shown the gif [used, and a few of the many iterations I went through editing
the images to make them usable with my colour scheme.

Unfortunately, swiftUI does not officially support gifs (there is no inbuilt function to deal with gifs),
therefore when I tried to add the gif image to the UI, it only displayed a static image. I attempted many
ways of getting around this problem, such as creating Ullmage extensions that looped through images
one at a time. Unfortunately, that method was extremely memory inefficient, so I decided to start again
using a different method.

I ended up using apple’s WebKit service to create a webview embedded in a swiftUI view to show the
image. Then I disabled any clicking/scrolling on the webview so the users will not know that it is a web
view that they are being shown. In this way I can display a gif image through an embedded http view
(essentially a website being displayed inside the app). The code I used to embed the gif image is shown
below.

import Foundation
import WebKit
import SwiftUI
import UIKit

struct GifImage: UIViewRepresentable {
private let name: String

init(_ name: String) {
self.name = name

}

//creating the actual webview using the gif file added to the files.
func makeUIView(context: Context) -> WKWebView {
let webView = WKwWebView()
let url = Bundle.main.url(forResource: name, withExtension: "gif")!
let data = try! Data(contentsOf: url)

webView.load(
data,
mimeType: "image/gif",
characterEncodingName: "UTF-8",
baseURL: url.deletingLastPathComponent()

//webView.scrollView.isScrollEnabled = false

//webView.scrollView.contentInset = UIEdgeInsets.zero
//webView.scrollView.contentInset = UIEdgeInsets(top: @, left: @, bottom: @, right: 9)
webView.scrollView.isUserInteractionEnabled = false
webView.scrollView.backgroundColor = UIColor(Color("Background"))

return webView

//updating the webview (making sure the gif animates)

func updateUIView(_ uiView: WKWebView, context: Context) {
uiView.scrollView.contentInset = UIEdgeInsets(top: @, left: @, bottom: @, right: 0)
uiview.reload()

I added the gif to my dashboard view using the following code —

12 Q@Environment(\.colorScheme) var colorScheme
@State var scanImage = GifImage("Light_Mode_Cropped")

15 var body: some View {

// a navigation view allows for links to other pages
18 NavigationView {

20 ZStack {

21 Rectangle()
2 .fill(Color("Background"))

23 .frame(maxwidth: .infinity, maxHeight: .infinity)
.edgesIgnoringSafeArea(.all)

VStack {

29 NavigationLink(destination: SkinClassifier()) {
: VStack {
31 if colorScheme == .dark {
GifImage("Dark_Mode_Cropped")
} else {
GifImage("Light_Mode_Cropped")

36 }
3 }.frame(width: 225, height: 225)
38 .background(Color.clear)

0 if colorScheme == .dark {

i Text("Scan")

42 .font(.title)

3 .bold()

i .foregroundColor(.white)
45 .opacity(1)

16 } else {

A Text("Scan")

8 .font(.title)

49 .bold()
.foregroundColor(.black)
.opacity(1)

As well as this I decided to use apple’s SFSymbols to add some more visual aspects to the buttons.
Next to each of the buttons, [added symbols that were related to the view the button led to and made
sure that they were coloured using the new colour format. The code for one of the buttons is shown
below, each of them follow a near identical format (except for where the link leads to and parameters

passed into the view).

HStack {
Image(systemName: "person")
.font(Font.system(.largeTitle))
.foregroundColor(Color("Anti-Background"))
.padding()
NavigationLink("Risk Factors", destination: InformationPage(coreDataManager: CoreDataManager()))
.buttonStyle(NeumorphicButtonStyle(color: Color("Background")))

}.padding()

The UI after this ticket is shown below. Unfortunately, I cannot show the gif in this document, but the
visual at the top does rotate.

Melanoma Detector Melanoma Detector

Scan Scan

Weather Risks - Weather Risks

Risk Factors Risk Factors

Reminders Reminders

19:16 ull T @3 19:16 ol =T @

Melanoma Detector Melanoma Detector

Scan Scan
-2 32
6)‘- Weather Risks 5)\- Weather Risks
0] ; (0] ;
o Risk Factors o Risk Factors
Reminders Reminders

I started off by making all the buttons in this page consistent with the rest of the app, changing their
button style to the custom one I made earlier. I also changed the text in all the buttons to make them
more concise.

82 //button to call subroutine to classify image

83 Button("Classify Image") {

84 showingClassificationWarning = true

85 (self.classificationLabel, self.confidence) =
imageClassifierInstance.performImageClassification2(image:
imageSelectedFromCameraRoll)

86 //converts confidence from @-1 to ©0-100, adding normalisation

87 self.confidence = imageClassifierInstance.certaintyFunction(oldCertainty:
self.confidence)

l 88 }.buttonStyle(NeumorphicButtonStyle(color: Color("Background")))

Furthermore, I made the output information easier to read, and more prominent in the view.

10 //what the image is classified as
108 Text(classificationlLabel)

9 .bold()
110 .foregroundColor(Color("Background"))

11 .padding()

12 .background(RoundedRectangle(cornerRadius: 20).foregroundColor(Color("Anti-Background")))
12 .padding()
114 .font(.title)

116 //confidence of classification

I 117 Text("Classifier Confidence: " + String(confidence))
18 .padding()
' 19 .font(.title3)

Then I added the correct information to the alert shown when you click on “classify image” in the app
(which was previously full of placeholder information).

l 33 Button("Classify Image") {
84 showingClassificationWarning = true
85 (self.classificationLabel, self.confidence) =
imageClassifierInstance.performImageClassification2(image:
imageSelectedFromCameraRoll)
//converts confidence from 0-1 to ©-100, adding normalisation
self.confidence = imageClassifierInstance.certaintyFunction(oldCertainty:
self.confidence)
l 88 }.buttonStyle(NeumorphicButtonStyle(color: Color("Background")))
39 .alert(isPresented: $showingClassificationWarning) {
Alert(
title: Text("Important Note"),
message: Text("Please do not take the result of this app for granted. It is an
algorithm that is not always correct and it will always be better to see a
professional doctor if you have any concern."),
93 dismissButton: .default(Text("I understand"), action: {
h })
95)
96 }.padding()

I also made all the corners of every element in the app rounded, so that they are more user friendly and
fit the aesthetic of the whole app. The placeholder image for the skin classifier was also replaced with
an icon from SF Symbols.

47 Button(action: {
showChooseCameraOrRollSheet = true

}, label: {
if changeClassificationImage == true {
Image(uiImage: imageSelectedFromCameraRoll)
.resizable()
.cornerRadius(20)
.frame(width: 250, height: 250)
} else {
Image(systemName: "camera.viewfinder")
.resizable()

60 .cornerRadius(20)

61 .foregroundColor(Color("Anti-Background"))

62 .frame(width:250,height:250)

63 }

64 }).actionSheet(isPresented: $showChooseCameraOrRollSheet) {
65 ActionSheet(title: Text("Select Photo"),

The UI of the skin classifier view after this ticket is shown below.

Skin Classifier Skin Classifier

Important Note
Please do not take the result of this
app for granted. It is an algorithm that
is not always correct and it will always
be better to see a professional doctor
if you have any concern.

Classify Image Classify Image

Save Image Save Image

n/a n/a

Classifier Confidence: 0.0 Classifier Confidence: 0.0

Skin Classifier

Classify Image

Save Image

Classifier Confidence: 100.0

To make the risk factors page more usable for everyone I added a “more information” button onto each
page for the risk factors. This button opens a link in the user’s default web browser to cancer research
uk’s information about that specific risk factor. The website is also where I got a lot of my information
when developing the app (link: https: //www.cancerresearchuk.org/health-professional/cancer-
statistics/statistics-by-cancer-type/melanoma-skin-cancer/risk-factors).

https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/melanoma-skin-cancer/risk-factors
https://www.cancerresearchuk.org/health-professional/cancer-statistics/statistics-by-cancer-type/melanoma-skin-cancer/risk-factors

I implemented this by adding a button that opens the browser with the link of the correct risk factor the
user is currently looking at. The code and Ul is shown below.

I also removed the dev value from being shown in the app.

//1ink to risk factors in cancer research uk website
Link("More Info", destination: URL(string: riskFactorsModel.returnMoreInfoURL(name: riskFactor.name ??
"https://www.cancerresearchuk
.org/health-professional/cancer-statistics/statistics-by-cancer-type/melanoma-skin-cancer/risk-factors"))!)
.buttonStyle(NeumorphicButtonStyle(color: Color("Background")))
.padding()
}.navigationBarTitle(riskFactor.name 2?2 "")

func returnMoreInfoURL(name: String) -> String {
if name == "Age"{

return
"https://www.cancerresearchuk
.org/health-professional/cancer-statistics/statistics-by-cancer-type/melanoma-skin-cancer/risk-factors#collapseZ
ero"

-~

else if name == "Gender" {

return
"https://www.cancerresearchuk
.org/health-professional/cancer-statistics/statistics-by-cancer-type/melanoma-skin-cancer/risk-factors#collapseZ
ero"

~

else if name == "Skin Type" {

return
"https://www.cancerresearchuk
.org/health-professional/cancer-statistics/statistics-by-cancer-type/melanoma-skin-cancer/risk-factors#collapseF
our"

~

else if name == "Eye Colour" {

return
"https://www.cancerresearchuk
.org/health-professional/cancer-statistics/statistics-by-cancer-type/melanoma-skin-cancer/risk-factors#collapseF
ive"

~

else if name == "Hair Colour" {

return
"https://www.cancerresearchuk
.org/health-professional/cancer-statistics/statistics-by-cancer-type/melanoma-skin-cancer/risk-factors#collapseF
ive"

-

alea if name == "Numhar nf Malac" {

17:57

4 Melanoma...

@ cancerresearchuk.org
evidence of an association with cancer risk; this
list is not exhaustive.

See our other pages for general information
about cancer, or ways to reduce your risk.

Lifetime risk of +

melanoma skin cancer

The estimated lifetime risk of being diagnosed
with melanoma skin cancer is 1 in 36 (3%) for
males, and 1 in 47 (2%) for females born after
1960 in the UK.[1]

These figures take account of the possibility
that someone can have more than one
diagnosis of melanoma skin cancer in their
lifetime (‘Adjusted for Multiple Primaries’ (AMP)
method).[2]

You selected: 40-69

aoma Sin Cano Mar 30 Women

"

Bom A 1960, UK

Update

More Info

17:57

< Melanoma...

& cancerresearchuk.org

Hair colour

Melanoma skin cancer risk is up to three times
as high in people with red/red-blonde hair,
compared with dark-haired people, meta-
analyses have shown.[1,2] Melanoma skin
cancer risk is around twice as high in blondes,
and 46% higher in people with light brown hair,
compared with dark-haired people, a meta-
analysis showed.[1]

Eye colour

Melanoma skin cancer risk is 57% higher in
people with blue/blue-grey eyes, compared
with dark-eyed people, a meta-analysis
showed.[1] Melanoma skin cancer risk is 51%
You selected: dark higher in people with green/grey/hazel eyes,
compared with dark-eyed people.[1]

References

Update

1. Olsen CM, Carroll HJ, Whiteman
DC. Estimating the attributable
fraction for melanoma: a meta-
analysis of pigmentary
characteristics and freckling. Int J
Cancer 2010;127:2430-45.

. Williams PF, Olsen CM, Hayward
NK, et al. Melanocortin 1 receptor
and risk of cutaneous melanoma:

A matasanalysisaodastimates of

More Info

N

Next, I decided to make the risk factor value that the user sees more user friendly. I did this by
replacing the risk factor raw value with a visual representation that I developed for the weather risks
section (with the colours changed). And then to allow the user to have a concrete use for the risk factor I
gave a recommendation for how often they should be checking their skin for melanoma. The code and
the final UI are shown below.

"
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55

56
R7

61
62

63

64
65

class InformationPageViewModel {

@ViewBuilder func getRiskFactorColourCodedRectangles(riskFactorVal: Double) -> some View {

if riskFactorVal == -1 {
VStack {
Text("n/a").padding()
HStack {

Text("Risk: ").bold()
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color(red: © / 255, green: 255 / 255, blue: 128 / 255)).opacity(@.5)
.frame(width: UIScreen.screenWidth/é6, height: 20)
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color(red: 192 / 255, green: 255 / 255, blue: @ / 255)).opacity(@.5)
.frame(width: UIScreen.screenWidth/6é, height: 20)
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color(red: 245 / 255, green: 255 / 255, blue: @ / 255)).opacity(0.5)
.frame(width: UIScreen.screenWidth/6, height: 20)
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color.orange.opacity(0.5))
.frame(width: UIScreen.screenWidth/6é, height: 20)
}
}.padding(.bottom)

} else if riskFactorVal <= 2 {

VStack {
Text("You should check your skin every 6 months").padding()
HStack {

Text("Risk: ").bold()
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color(red: © / 255, green: 255 / 255, blue: 128 / 255)).opacity(1)
.frame(width: UIScreen.screenWidth/6, height: 20)
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color(red: 192 / 255, green: 255 / 255, blue: @ / 255)).opacity(0.5)
.frame(width: UIScreen.screenWidth/6, height: 20)
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color(red: 245 / 255, green: 255 / 255, blue: @ / 255)).opacity(0.5)
.frame(width: UIScreen.screenWidth/6, height: 20)
RoundedRectangle(cornerRadius: 25, style: .continuous)
.fill(Color.orange.opacity(0.5))
.frame(width: UIScreen.screenWidth/6, height: 20)
}
}.padding(.bottom)

1 alea if vieclkFartar\/al ¢— 2 R [

//Text(riskFactorsModel.calculateFinalRiskFactor(riskFactorsList: riskFactorsList)
) .padding()
informationPageViewModel.getRiskFactorColourCodedRectangles(riskFactorVal:

Double(riskFactorsModel.calculateFinalRiskFactor(riskFactorsList: riskFactorsList))

?? -1)

Information Page Information Page

Age Age 10-19

Gender Gender Male
Skin Type Skin Type Type 1
Eye Colour Eye Colour blue/blue-grey
Hair Colour Hair Colour red/red-blonde
Number of Moles 0-20 Number of Moles 100+
Freckles Absent Freckles Present
Family History None Family History more than 1 member
Diseases and Conditions None Diseases and Conditions IBD and HIV

Body Mass Index 18.5-25.9 b

Reset All
Reset All

You should check your skin every 2-3
You should check your skin every 6 months months

Risk: (D Risk:)

I also decided to implement a feature that I was told to by a stakeholder — a confirmation button for the
reset button. The code and the associated functionality are shown below.

Button("Reset All") {
| showingResetRiskFactorsAlert = true
}.buttonStyle (NeumorphicButtonStyle(color: Color("Background")))
.padding()
.alert(isPresented: $showingResetRiskFactorsAlert) {
Alert(
title: Text("Are you sure you want to reset everything?"),
message: Text(""),
primaryButton: .destructive(Text("Reset")) {
riskFactorsModel.resetRiskFactors(coreDataManager: coreDataManager,
listOfRiskFactors: stringlListOfRiskFactors)
populateRiskFactors()
.

secondaryButton: .cancel()

//text showing numerical risk factor value

//Text(riskFactorsModel.calculateFinalRiskFactor(riskFactorsList: riskFactorsList)).padding()

informationPageViewModel.getRiskFactorColourCodedRectangles(riskFactorVal:
Double(riskFactorsModel.calculateFinalRiskFactor(riskFactorsList: riskFactorsList)) ?? -1)

Information Page

Age 10-19
Gender Male
Skin Type Type 1
Eye Colour blue/blue-grey

Hair Colour red/red-blonde

Are you sure you want to Are you sure you want to Number of Moles 100+
reset everything? reset everything?

Freckles Present

Family History more than 1 member

Diseases and Conditions IBD and HIV

Reset All

You should check your skin every 2-3
months

Risk:

In this sprint [worked on making the app much more usable. I converted the app from just a
functionality-based app to one that can be used by anyone in an enjoyable way. In the next section of
the documentation, I will test the app as a whole and further improve upon it, removing any errors or
problems that arise. Furthermore I will be implementing any significant stakeholder feedback.

This sprint has worked on the following points specified in the design section:
- General structure improvement

